Thema:

Bearbeiter:

Immatrikulationsnummer:

Referent:

Korreferent:

Abgabe:

Hochschule Darmstadt

Fachbereich Media

Studiengang Information Science & Engineering
/ Informationswissenschaft

Masterarbeit

User Interface Development based on XML Schema

Maximilian Richter
724764

Prof. Dr. Bernhard Thull
Prof. Dr. rer. nat. Reginald Ferber

2. Juli 2012

Abstract

This master thesis describes the potentials of developing a user interface based on
an existing XML Schema definition. The focus is on automatic methods for creating
interface elements.

The theoretical and practical basics and referenced fields are described and their
contribution to the solution approaches are explained. Two such prototypical im-
plementations are demonstrated and compared: a) the Eclipse Modeling Framework
(EMF) in combination with the Extended Editing Framework (EEF) as an Eclipse-
based and thus Java-based software generation framework, and b) a browser-based
prototype that builds on HTML5, CSS and JavaScript/CoffeeScript. It follows the
Model-View-Controller paradigm, its generation concept is developed by the author
and concretely implemented with the scripting language Python.

Zusammenfassung

In dieser Masterarbeit werden die Moglichkeiten beschrieben, wie auf Basis der ex-
istierenden XML-Schema-Definition fiir die Projektinformationssprache PrIML ein ge-
eignetes User Interface erstellt werden kann. Der Fokus liegt dabei auf den Potentialen
der automatischen Erzeugung von Oberflachen-Elementen.

Es werden die theoretischen und praktischen Grundlagen und Beziige dargestellt
und deren Beitrag zur Losung der Aufgabenstellung deutlich gemacht. Zwei Ansétze
fiir konkrete prototypische Umsetzungen werden in der Arbeit vorgestellt und ver-
glichen: a) das Eclipse Modeling Framework (EMF') in Kombination mit dem Extended
Editing Framework (EEF) als Eclipse- und damit Java-basierter Ansatz der Software-
Generierung und b) eine Browser-basierte Losung, die HTML5, CSS und JavaScript/
CoffeeScript einsetzt, auf dem Model-View-Controller-Paradigma basiert und dessen
Generatorschritte selbst konzeptioniert und mit der Skriptsprache Python umgesetzt
sind.

ii

Declaration

I hereby declare that I wrote this thesis autonomously and no other than the listed
references have been used.

Precise, explicit and complete citations are applied whenever I referred to external ma-
terials, texts or notions.

All other content in this thesis was created by myself if not stated otherwise.

I accept that it is an attempt of deception if this declaration proves to be incorrect.

Date Signature

Erklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbstiandig erstellt und keine an-
deren als die angegebenen Hilfsmittel und Quellen benutzt habe.

Soweit ich auf fremde Materialien, Texte oder Gedankengéinge zuriickgegriffen habe,
enthalten meine Ausfiihrungen vollstdndige und eindeutige Verweise auf die Urheber
und Quellen.

Alle weiteren Inhalte der vorgelegten Arbeit stammen im urheberrechtlichen Sinn von
mir, soweit keine Verweise und Zitate erfolgen.

Mir ist bekannt, dass ein Tauschungsversuch vorliegt, wenn die vorstehende Erklarung
sich als unrichtig erweist.

Ort, Datum Unterschrift

iii

Declaration Concerning Library Services

Please choose:
O T agree that this thesis is loaned to library users.

O I do not agree that this thesis is loaned to library users. It contains confiden-
tial corporate information and is thus not accessible to the public.

Date Signature

Erklarung zur Ausleihe

Bitte ankreuzen:
O Mit der Ausleihe der gedruckten Abschlussarbeit bin ich einverstanden.

O Mit der Ausleihe der gedruckten Abschlussarbeit bin ich nicht einverstanden. Die
Arbeit ist gesperrt, da sie in einem Betrieb durchgefiihrt wurde und ihr Inhalt ausdriick-
lich durch diesen gesperrt ist. (Vgl. ABPO § 18 (9))

Ort, Datum Unterschrift

v

List of Figures

21
3.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Al
A2
A3
A4
A5
A6
A7

Requirement extract from a work report trace HTML file 5
UsiXML model components 13
XML Schema components0 21
OMG EMOF class diagram, 24
Ecore meta-model hierarchy L. 26
Workflow generation of the browser-based application 30
Web application screen shoto L Lo 33
Generation steps EMF oo 45
Generated PrIML EMF Editor 46
Generated PrIML EEF Editor. 47
Generation steps EEF o o o o 48
EEF widget AdvancedTableComposition 51
EEF widget TableComposition 51
Flow chart: method simpleType2Python(...) 76
Flow chart: method complexType2Python(...) 77
Flow chart: method getFlatElementsMapForComplexType(...) 79
Flow chart: method getModelForComplexType(...) 80
Flow chart: method getTemplateForComplexType(...) 82
Flow chart: method getControllerForComplexType(...) 83
Flow chart: method getJsonixMappingForComplexType(...) 85

List of Listings

21

5.1

6.1

6.2
6.3
6.4
6.5
6.6
6.7

Requirement XML extract 5
Requirement XML Schema fragment 22
Complex type for requirement groups flattened (serialized in JSON; ex-

tract) 38
Backbone.RelationalModel definition for requirement groups 39
jQuery template for requirement group 40
Spine.Controller for requirement groups in CoffeeScript 41
Jsonix mapping for requirement groups (extract) 43
Layout configuration for EEF references table 52

Manually added source code for history expansion on requirement addition 55

List of Tables

vi

6.1
6.2

Mapping between XML Schema types and HTML constructs 36
Comparison of requirements 58

Abbreviations

ABPO Allgemeine Bestimmungen fiir Priifungsordnungen
AJAX Asynchronous JavaScript And XML

API Application Programming Interface

AUl Abstract User Interface

CD-ROM Compact Disc-Read Only Memory

cf. confer

CRUD Create, Retrieve, Update, Delete; Common tasks in data manipulation
CSS Cascading Style Sheets

CTD Complex Type Definition

CUI Concrete User Interface

CWM Common Warehouse Metamodel

DOCX XML-based document format by Microsoft Word
DOM Document Object Model

DRY “Don’t Repeat Yourself”

DSDL Document Schema Definition Languages

DSL Domain-specific language

DTD Document Type Definition

ECMA European Computer Manufacturers Association
EEF Extended Editing Framework

e.g. exempli gratia (engl.: for example)

EMF Eclipse Modeling Framework

EMFT Eclipse Modeling Framework Technology

EMOF Essential Meta Object Facility

EPF Eclipse Process Framework

vil

f./ff. folio (engl.: on the next [page(s)])

FUI Final User Interface

GUI Graphical User Interface

HCI Human Computer Interaction

HTML Hyper Text Markup Language

ID Identifier

IDE Integrated Development Environment
ISCUE Nuremburgian software firm; developers of PriML
i.e. id est (engl.: that is)

JAXB Java XML Bidnings

JRE Java Runtime Environment

JSON JavaScript Object Notation

LESS [In fact not an abbreviation]

MacOS Macintosh Operation System

MBSD Model-based software development
MBUI Model-based User Interface

MBUID Model-based User Interface Development
MOF Meta Object Facility

MVC Model-View-Controller

OMG Object Management Group

OOP Object-Oriented Programming

p./pp. page/pages

PDA Personal Digital Assistant

PDF Portable Document Format

PHP PHP Homepage Pre-Processor

PIM Platform-independent model

PrIML Project Information Markup Language

PrlOF Project Intermediate Output Format

viii

PSM Platform-specific model

PyXB Python XML Bindings

Qt GUI Toolkit with bindings for many programming languages
RDBMS Relational Data Base Management System

RDF Resource Description Framework

SASS Syntactically Awesome Stylesheets

SGML Standard Generalized Markup Language

STD Simple Type Definition

Ul User Interface

UIDL User Interface Description Language

UIMS User Interface Management System

UML Unified Modeling Language

UsiXML USer Interface eXtensible Markup Language

VM Virtual Machine

W3C World Wide Web Consortium

XiInclude XML Include; standard for weaving together the content of XML files
XMI XML Metadata Interchange

XML eXtensible Markup Language

XPath XML Path; language for addressing nodes in XML structures
XQuery XML Query; language for programmatically querying XML collections
XSD XML Schema Definition

XSLT XML Stylesheet Language Transformation

ix

Contents

Introduction
1.1 Goals e
1.2 Thesis Structure

Project Information Markup Language (PrIML)

2.1 Goals e e
2.2 Model
2.3 Design Decisions
2.4 Workflow

2.4.1 XML Authoring

2.4.2 Transformation Processes
2.5 Relation to Thesis Scope

User Interface Development

3.1 Overview e
3.2 Model-Based User Interface Development
3.2.1 Goals
3.2.2 Definitions
3.2.3 Standards and Paradigms
3.2.4 Limitations e
3.3 Relation to Thesis Scope

Model-Based Software Development

4.1 Goals
4.1.1 Efficiency
4.1.2 Consistency Lo
4.1.3 DRY (Don’t Repeat Yourself)

4.2 Methodso

4.3 Relation to Thesis Scopeo

Modelling

5.1 Languages and Standards
5.1.1 Unified Modeling Language
5.1.2 XML-Related Standards

5.2 Meta-Modelling
5.2.1 Meta Object Facility
5.2.2 Eclipse Modeling Framework and Ecore
5.2.3 Similarities

5.3 Relation to Thesis Scope o

— e

[CSEENEENEEN JNC USRS

[(=}

10
10
11
12
14
14

15
15
15
16
16
16
18

6 Practical Solution Approaches
6.1 Requirements for User Interface Solution . .
6.2 Browser-Based Application
6.2.1 Generating Models
6.2.2 Generating Views
6.2.3 Generating Controllers
6.2.4 Generating JavaScript-XML bindings
6.3 Plugin Using Eclipse Modeling Framework .
6.3.1 Overview

6.3.2 Generation Processes and Development Steps

6.3.3 Customization Steps
6.4 Comparison
6.4.1 Requirement-Based Evaluations . . .
6.4.2 Overall Comparison
6.4.3 Recommendations for ISCUE

7 Conclusions and Lessons Learned
Bibliography

A Detailed Generation Step Descriptions
A.1 Web Application
A.1.1 Environment Setup
A.1.2 Preparation Methods

A.1.3 Templating Methods for MVC Components

A.1.4 Additional Generation Methods . . .
A2 Eclipse-Based,
A.2.1 Environment Setup
A.2.2 Eclipse Modeling Framework (EMF')
A.2.3 Extended Editing Framework (EEF)

B Thesis CD-ROM Contents

27
28
29
32
34
37
37
44
44
46
49
o6
56
61
62

64
67

74
74
74
75
78
84
86
86
86
88

90

xi

1 Introduction

1.1 Goals

This thesis describes the potentials of developing user interfaces for data management
based on eXtensible Markup Language (XML) Schema definitions. It is not the goal to
only gather and present theoretical concepts and models from this research area. Taking
the Project Information Markup Language (PrIML) XML vocabulary as the starting
point the thesis does describe fields of research and practice relevant when using XML
Schema as the basis for User Interface (UI) development. But based on these relevant
fields possible solutions are presented that are generic enough to be at least conceptually
reusable with other XML Schema vocabularies but also form a specific solution for the
PriML vocabulary. Applying the existing methods pragmatically to a specific use case
and identifying the value that model-based paradigms have when practically used is the
practical goal of the thesis.

Automating processes and partly generating software components is a key goal of
this thesis’ prototypical solutions. A discussion of the limitations of generating Uls
out of schema definitions is also within its scope and is illustrated with the solution
approaches described in chapter 6. Some common sense statements of Model-based
User Interface Development (MBUID) research shall be compared to the results that a
specific use case can provide.

Being able to give one or more recommendations (be it positive or negative ones)
to ISCUE — the firm that developed PrIML — in order to support the Ul development
efforts is another key aspect of the research and the prototypical developments described
in the following chapters. To have a better basis for such recommendation and for
the reasoning about advantages and disadvantages of environments and frameworks, a
comparison between two practical solution approaches seems appropriate.

1.2 Thesis Structure

Chapters’ Order The order of the chapters logically reflects the considerations made:
the input vocabulary is PrIML (chapter 2), for which a UI (chapter 3) is demanded.
Automation in the desired software development steps is desired — this leads to Model-
based software development in chapter 4 — which raises the necessity of clarifying what
models, (meta-)modelling and XML Schema, as a specific meta-model, are (chapter
5). Based on these descriptions the two prototypes can be presented and compared
(chapter 6) and conclusions (chapter 7) can be drawn.

PrIML Chapter 2 is about the current state of the PrIML model and process frame-
work. PrIML is a vocabulary and tool set for project information management. Its

model and workflow are described in order to define the basis for the desired UI. Since
this thesis uses PrIML as the precedence case in matters of applicabilty of platforms
and frameworks, there are cases where concessions have to me made concerning the
depth of research, comparison of different tools etc. A generic solution also applicable
to other non-PrIML XML Schema definitions is desirable, but when necessary, trade-
offs are made in favor of the applicability to PrIML. Examples used to illustrate the
explained constructs and methods are often taken from the PrIML vocabulary.

Theoretical and Practical Reference Fields Chapters 3 through 5 describe the fields
of research and practice that influence and form the overall topic and goal of the thesis.
Since the focus is on the semi-automatic Ul development based on a specific XML
Schema vocabulary there can be no exhaustive evaluations and explanations of the
referenced fields. The goal is to give an overview of the related concepts and focus on
the ones directly applicable and appropriate for the solution in question. In cases where
broader and/or deeper explanations are omitted due to the thesis focus, this is briefly
commented as such.

Ul Development Chapter 3 describes the field of (graphical) user interface develop-
ment.! The focus is on explaining the common patterns of modern Uls and the possibili-
ties and limitations when formalizing processes through model-based and model-driven
approaches in Ul development. Note that most aspects of usability are not deeply
considered about in this thesis. Potentials and limits of formalizing Ul components,
systematically processing them and the general model-based approach are essential to
the considerations taken throughout the complete thesis. These aspects all influence
the usability but it is not the main focus to manually establish usability mechanisms
when it comes to the prototype development. Customization approaches are included in
order to be demonstrations of applicability rather than to be readily developed add-ons.

Model-based Software Development. Modelling Chapter 4 presents concepts and
methods of model-based software development. The main rationale of these concepts
in general and for this thesis specifically is to avoid duplication of existing domain
information in two or even more places [KXF12]. This leads to the working hypothesis
that it is possible and appropriate to reuse information from the XML Schema definition
and thus partly automate the development of the user interface for PrIML. Such models,
modelling and meta-modelling standards are described in chapter 5.

Prototypical Developments After describing the fields, tools and paradigms relevant
to this development approach chapter 6 describes concrete solution approaches made in
the thesis’ context. They are the core of this thesis and illustrate concrete use cases of
the theoretical methods. Using these hands-on solution approaches to reveal potentials
and limits of MBUID is one goal. Comparing two different ways of Ul application
generation is the other goal, that is expected to increase learning effects concerning
design principles of generator frameworks and processes.

'In most cases in this thesis the term development is preferred over design.

Conclusions and Lessons Learned Chapter 7 evaluates the results of the thesis and
compares them with the initial goals. Recommendations in terms of framework appro-
priateness and possible limits of approaches are the pragmatic aspect of the conclusions
that shall be drawn in this chapter. Technical and methodical lessons learned will also
be part of this final chapter.

2 Project Information Markup Language
(PrIML)?

2.1 Goals

PriML is a project management model and tool. It was developed by software engineers
in the software development company ISCUE [ISC11] primarily for internal usage. Its
goal is to provide a structure for project information and the processes necessary to
transform this information into human-readable documents for project reporting and
traceability. The information about, for example, the project’s requirements and the
interdependencies thereof are the basis for a visual and table-based presentation in
report documents. See listing 2.1 for an example system requirement from the ISCUE
demo project. Figure 2.1 shows the extract of one possible resulting HyperText Markup
Language (HTML) work report file.

2.2 Model

Conforming to the terminology that will be introduced in chapter 4.2, PriML is a
Domain-specific language (DSL) for the domain of project information management. It
allows users to organize the information about projects and the related entities, i.e., to
describe the specific project they are working on. Thus, a concrete project description
is an instance of the PrIML model. This in turn is described using XML Schema as
the meta-model and is divided into the sub-systems

e Data
(all elements for project team, requirements, modification requests, etc.),
o Filter
(constructs for allowing to filter entities by several aspects),
e Format
(basic formatting constructs),
e Report
(elements for defining report document templates),
e Statemachine
(constructs for expressing state machine behavior),
o Template
(for further report templating functionality) and
e Use Case
for the definition of use case diagrams.

2For this section cf. [ISC12]

Ui W N~

NoRNe JBEN e

10
11
12
13
14
15
16
17
18
19
20

<requirement id="SysReq_0003">
<history version="1" editor="oseidel"
date="2008-10-23" change="created" />
<description>
The stopwatch should run independent of the
operating system.
</description>
<val_criteria>
The stopwatch runs in a browser.
</val_criteria>
<references>
<refine>
<external_document refId="extDocCustReq">
<version version="1" state="done" />
</external_document>
<requirement reflId="SysReq_0002">
<version state="done" version="1" />
</requirement>
</refine>
</references>
</requirement>

Listing 2.1: Requirement XML extract

6 Requirements

6.1 System Requirements

ID

Description References

SysReq 9999 All requirements shall be reviewed against their parents.

6.1.1 Platform

ID Description References

SysReq 0001 The stopwatch shall run as an application on the PC. extDocCust
Req

SysReq 0002 The stopwatch shall run under Windows and Linux. extDocCust
Req

SysReq 0003 The stopwatch should run independent of the operating system. SysReq 0002
extDocCust
Req

SysReq 0004 The stopwatch should run in a browser. SysReq 0002
extDocCust
Req

Figure 2.1: Requirement extract from a work report trace HTML file

In addition to these there is the declaration of an intermediate XML format called
Project Intermediate Output Format (PrIOF) that is used in the transformation pro-
cesses described below. See the thesis CD-ROM for detailed visualization images of the
PriML sub-system XML Schema Definitions (XSDs).

2.3 Design Decisions

Creating PrIML was in the first step a conceptual process. There existed ideas and
concepts of entity types, their possible relations and the general request for model
extensibility when needed.

An essential design decision was not to use a Relational Data Base Management
System (RDBMS). Efficient versioning and diff® mechanisms, back-up functionality
and collaboration were key goals of PriML and RDBMSs could not meet these goals
sufficiently.

One approach considered in the early development phase was making PrIML a Doxy-
gen [Dox12] add-on and extending the commment structure that this tool provides. The
lack of a reliable syntax basis and the intermixing of project information with source
code discouraged this approach.

In the next steps the following main design decisions were made:

e use the XML standards family as highly standardized and well-supported in terms
of tools and adaption in practice,

e use XML as the desired serialization format for project description instances,

e use XML Schema as the meta-modelling language for convenient element, type,
attribute and group declaration constructs and

e use XML Stylesheet Language Transformation (XSLT) as the language for de-
scribing the transformation (and information enhancement) processes.

Originally PrIML-conforming project descriptions had to be stored in one XML file
and were processed by one XSLT script directly in the web browser. Thus HTML was
in that state the only output format directy available and due to browser rendering
XSLT 1.0 was the transformation standard used.* With the need for more complex
transformations that demanded for temporary result tree construction introduced by
XSLT 2.0 and the request for more output formats, a re-design proved to be necessary.

The necessity for an intermediate data format between PrIML instance documents
and the generated report document files arose and characterized the re-design. Thanks
to this intermediate format, introducing new features in the PrIML model definition
only affects one transformation step, i.e., the one that transforms PrIML instances
into PrIOF. The further transformations are not affected by schema changes, they are
“facaded” by the intermediate format. Additional output formats can easily be added
to this intermediate format as well.

The XML Schema definitions are separated according to the subsystems mentioned
above and stored in respective .xsd files. This modularization reflects the complemen-

3The name of the Unix tool diff [Chr93] is often used to generally describe the step of tracking data
changes.
“Web browsers do not fully (or not at all) support XSLT 2.0 transformations.

tarity of the different vocabulary aspects, the parts are interwoven via xsd:import
directives as needed. Modularity and the ability for recombination and independent
editing by potentially more than one developer is also desired on the instance level.
Therefore the element definitions in the XML Schema files are constructed as to enable
the user to choose many different PriML elements as potential document root elements.
This allows for nearly arbitrarily granular modularization. Bringing together these sep-
arated instance document fragments is realized via XInclude statements. Including via
the XInclude standard also demands that an xml:base attribute is allowed to occur
on the level of the to-be-included element.

2.4 Workflow

The current PrIML workflow grounds on the XML Schema model files and XSLT pro-
cesses. It uses an XML processor for performing the tasks of validation and trans-
formation. Eclipse is used as the platform bundling all components. It includes the
basic XML perspective,® the XML processor Sazon B [Kay09] and Ant [Apal2] build
support.

2.4.1 XML Authoring

XML authoring, i.e., the data entry of XML structures, is accomplished through the
XML perspective of Eclipse. It provides users with basically two different views. The
design view uses a tree structure for presenting and editing the XML. The source view
lets users directly edit the XML source code. Both views provide guidance mechanisms
such as context-sensitive suggestions for sub-element and attribute creation or the pre-
sentation of documentation text fragments retrieved from the referenced XML Schema
file.

The model requires IDs for entities of some types. These IDs have to be unique
throughout the complete project description and have to match a defined pattern. IDs
have to be manually specified and maintained correctly when it comes to referencing
them from other entities. XML Schema’s xsd:unique construct is used. The validation
process uses it to raise errors in case the uniqueness of IDs is not obeyed.

2.4.2 Transformation Processes

Based on the aforementioned project descriptions in XML files there are XSLT [W3C07]
processes transforming the data via PrlIOF into structurally pre-defined report doc-
uments. The processes are bundled into Ant build files and can be executed from
within the Eclipse Integrated Development Environment (IDE). Directory clean-ups
and eventual sub-directory creations accompany the core XML validation and XSLT
transformation steps.

An important step before any of the output is generated is the building of a tem-
porary result tree. It contains information about relationships between entities in the
processed instance document(s). This information has to be resolved in a complex

SEclipse uses the term perspective for pre-configured user interface subsets that fit the respective
context, in this case XML authoring and editing.

manner because it is not directly accessible in all possible directions out of the XML
instance document(s). Internally this tree is called BiDirTraceTree, indicating the bi-
directionality. This means that even if a reference between two entities is only asserted
from one of the involved entities, it is made accessible from both directions via the
BiDirTraceTree.

Possible result formats of the transformation processes are currently HIML, DOCX
and the Portable Document Format (PDF). These are viewed by users with the re-
spective viewer tools such as a web browser, office suite and PDF viewer. The PriML
subsystem for reports provides the language constructs for defining report “skeletons”
for respective report documents. Filter mechanisms are defined in PrIML’s filter XSD
file for selecting specific instances matching (potentially arbitrarily deep nested) fil-
ter rules. The report documents are populated with the concrete data by the XSLT
processes.

2.5 Relation to Thesis Scope

The basic design decisions as well as the current state of PrIML’s model and workflow
have been described. They define the tool’s state and the basis for this thesis’ consid-
erations for UI solutions. Building upon the premises, existing model definitions and
processes, the PrIML framework uses, the relevant fields of research and practice can
be described.

The focus of these following chapters mainly follows the applicability for the PriML
use case.

3 User Interface Development

3.1 Overview

The field of UI devlopment belongs to the more general research field of Human Com-
puter Interaction (HCI). The latter subsumes all aspects of human users interacting

with computers and vice versa. Generally put, Uls are the “[...] directly experienced
aspects of a thing or device” ([Tra09], p. 9) and for most users “[...] the distinction
between interface and system is [...] meaningless” ([Tra09], p. 1). De facto there is a

difference between the Ul as the front end of an application and the back-end processes
carrying out more complex computations and doing data persistence.

Over the last few years there have been developments towards common features of Uls
(cf. [Mye00], p. 2). The tendency to provide users with a graphical user interface (GUI)
instead of a textual (command line) interface is such a common feature on a particularly
low level. The fact that keyboard and mouse are widely accepted as the translating
units between physical interaction and computable signals is another basic commonality.
Building on this graphical fundament and the peripheral units for interaction there have
been developed different sorts of features and interaction patterns, mostly referred to
as widgets. These are the components that GUIs are constructed of. Frequently used
examples are group boxes, buttons, drop-down lists, navigation menus and text input
fields.

Research in Ul development distinguishes between different interaction patterns such
as direct manipulation, menu selection, form fill-in, command language and natural
language (cf. [Shnl0], pp. 84ff.). They differ in terms of the level of formalization and
specificity respectively. Enabling users to directly manipulate items in a Ul usually
allows a more natural way of interacting and editing. Generally, using appropriate
metaphors (cf. [Appll]) in Uls is crucial since it reflects the tasks to be performed in
an intuitive manner. An example used throughout operating systems such as Windows
and MacOS is the metaphor of a desktop as the basic interaction space for the user
[Wik12a]. This is often complemented by adapting the task of putting an object into
the trash can to the task of deleting a file, object or folder (cf. [Shnl0], p. 192). It is an
example of bringing concepts into a Ul that are not 1:1 (in a physical way) applicable
but intuitively acceptable by users.

Within certain contexts such as operating systems, windowing systems or corpora-
tions there often exist guide lines for UI design patterns. An example is [Appll] for
the MacOS operating system, similar standards exist for Android-based applications
[Gool2] and other contexts. Creating elements of recognition and thus lowering the
acceptance and understanding threshold are the main goals of such guide lines. The
“look and feel” of a system is in most cases desired to be perceived consistently. A
UI that behaves and/or looks different from the user’s expectation can easily lead to
confusion or even rejection (cf. [Shnl0], pp. 23 and 88).

3.2 Model-Based User Interface Development

For several years there have been surveys concerning the costs and efforts in software
development. Especially the role of Ul development as a sub-category of software
development is a prominent one. Uls are the front end of a software system and they
reflect the functionality and the way of interacting with it. A great amount of time
and effort of software projects is put into UI development (cf. [Mye92], p. 195%) and
for many years the necessity to make Ul development more efficient has been focused.
The goals and important concepts of these approaches are described below. In general,
model-based Ul development aims at formally describing user interfaces and introducing
abstraction layers between the domain, the user’s tasks and the UI itself — mostly with
abstract, concrete and final aspects ([Sch96], pp. 7ff.; cf. [Cal03], p. [5]).

Just recently the World Wide Web Consortium (W3C) founded the Model-Based User
Interfaces (MBUI) Working Group that in its mission statement formulates the plan to
”[...] develop standards as a basis for interoperability across authoring tools for context
aware user interfaces for Web-based interactive applications.” [W3C11la] The working
group’s “initial focus is on task models, and Ul components and integrity constraints
at a level of abstraction independent of the choice of device” [W3C11a] and will later
include the more concrete Ul levels (cf. [W3C11a]).

3.2.1 Goals

The main MBUID goals reusability, flexibility and platform-independence (cf. [Leh05],
p. 9) and multi-modality are described in this chapter.

Reusability Reusing components and re-occurring patterns is crucial in MBUID. The
common aspects of Uls can be abstracted out and do not have to be newly implemented
in every Ul. The fact that data structures are mapped to Ul widgets in often similar
ways can influence MBUID systems. Such mappings leverage reusability.

Flexibility When applying MBUID patterns it is possible to remain flexible in terms
of widget representations and layout decisions (cf. [Pin03], p. 62). Design decisions are
out-sourced and declared centrally. Changing it causes direct reflection in all applicable
contexts. Refactoring of the Ul can be realized without expensive re-development, this
increases flexibility.

Multi-Platform/-Device Although the importance of software development for dif-
ferent types of devices such as Personal Digital Assistant (PDAs) and cell phones has
been stressed for several years, it has only reached broad attention and adoption through
main-stream product families such as smart phones and tablet computers in the last
few years.

Apart from device-specific implementation differences there has always been the
multi-platform issue, i.e., the development for different operating systems. In a broader
sense the term multi-platform development can also include implementations based on

Y Although this survey dates back to 1992 it has been frequently cited since then, cf. [Meillb], p. 2

10

different IDE frameworks and/or different web browsers when it comes to web-based
applications.

The development for different platforms and/or devices can be simplified with MBUID
methods. Using a UI model for platform-specific Ul generation processes can avoid
duplicating implementation efforts. General platform-independent models (PIMs) are
transformed into platform-specific models (PSMs) by adding specific aspects of the
respective target platform.

Multi-Modality Declaring UI elements in different levels of abstraction in models
makes the development of multi-modal interfaces easier. One UI model (or more than
one with each one representing a different aspect of it) can be the basis for different
manifestations. Gesture-based and voice-operated are important examples of interac-
tion techniques that can be propelled by model-based development methods. Multi-
modality often co-occurs with device specifica; smart phones and tablets for example
have accelerometers that form the basis for motion interaction. Desktop computers do
not provide such interaction methods, the same application may however be available
there as well. One task that a user can accomplish with the application has to be
manifested in different ways, dependent on the modalities the respective device offers.

3.2.2 Definitions

There are concepts and model distinctions in MBUID that are frequently used and
implemented. These are defined in this chapter. It is worth noting that not every
possible model type is demanded and/or applicable in every framework and MBUID
context (cf. [Sze96], p. xxiv; cf. [Sch96], p. 7).

The early MBUID approaches rather propagated the concept of one integrated model
whereas the further developed recent approaches divide the different aspects of the Ul
into independent models complementing each other (cf. [Sch96], p. 18).

Domain Model A domain model describes the concepts of reality that are relevant to
the UI. The entity types, attributes and references in the domain are formally described.
The PrIML vocabulary is an example of a domain model as it models the project
information management domain.

Task Model A task model contains descriptions of tasks that users can perform with
the UL It formalizes the results of task analysis (cf. [Tra09], p. 41) and represents
the “[...] flow of information between the models when carrying out the user’s tasks”
([Gri01], p. [3])-

User model / User profile Characteristics that users of a Ul share can be formally
expressed in a user model. Abilities and possible limitations are examples of express-
able features. Preferences concerning the availability of options in the UI are another
potential aspect reflected in a user model (cf. [Sch96], pp. 10f.).

11

Abstract User Interface The Abstract User Interface (AUI) describes the Ul in terms
of functionality but not taking concrete widget representations into account. See chapter
3.2.3 for an example.

Concrete User Interface The Concrete User Interface (CUI) describes the Ul in a
concrete manner, defining not only abstract functionality but specific widget types
used for presentation as well.

Final User Interface Manifestating a CUI in a specific language, framework or in-
frastructure is formally called the final user interface (FUI). It builds potentially on all
aforementioned Ul model types and realizes their aspects in a functional Ul

3.2.3 Standards and Paradigms

User Interface Description Languages (UIDLs) The concept of UIDLs is to describe
Uls declaratively. Often there exists more than one model for a Ul since different levels
of abstraction are separated from each other as described above. Some modern UIDLs
are based upon the Cameleon Reference Framework ([Cal03]) which defines four basic
levels to be represented (cf. [W3Cl12a]):

Concept model and Task model,
Abstract User Interface (AUI),
Concrete User Interface (CUI) and
Final User Interface (FUI).

Formally, UIDLs are DSLs for the domain of Uls. They provide constructs that
are commonly needed when describing UI components, layout and sometimes behavior.
Many UIDLs — as DSLs in general — use XML as their basis.

UI declarations need to be processed in any way to be functional. The formal de-
scription is rendered into the corresponding components on the screen, transformed into
a voice recognition system or any other possible sort of interface. This rendering can
either be performed at build-time, i.e., statically, or at run-time, i.e., dynamically.

One UIDL that modularizes its model components instead of bundling them up in one
model is the USer Interface eXtensible Markup Language (UsiXML) [Usi07a]. Abstract
UI, concrete Ul, domain and tasks are some of the describable model aspects. Figure
3.1 depicts the main model types in UsiXML.

GUI Toolkits and Libraries In realizing the reusability aspect in Ul development GUI
libraries and toolkits form a common basis. They provide sets of widgets that can be
included into and used by applications (cf. [Mye95], p. 14).

GUI toolkits can either be dependent on a certain platform or programming environ-
ment like for example Java Swing [Jav10] or platform-independent like Qt [Nok12], for
which several language libraries exist.

In a broader sense web-based libraries and frameworks like jQuery Ul [jQul2c| and
Twitter’s Bootstrap [Twill] are GUI toolkits as well. They themselves depend on the
widgets the HTML standard [W3C12c| provides but they extend them in many cases.

12

oo

... [®oreationDate : string . Qn 0.n | authortame
& schemaVersion smng - E——
1 e On
A B s
- 1..)1 In“\"- 1"'1-. qx SyrcdifDate : sting
|
!
4
| x
N
0.1 /0.1 " A
pa /o Lo 80 0.1 “.0n eI
| fransformationiviods! | | domaniVcdd | tasidioded : albced | culMadd rrappinoliodel | contexivicdsl Reacx.ltel‘..-txjel]
| = | O R N S 1
| | | s e | | |
L
7
&id: giing
Sname | string

Figure 3.1: UsiXML model components; [Usi07b]

User Interface Paradigms Since Uls are building upon common characteristics these
can be listed here with focus on applicability to this thesis’ goal. Most Uls are based
on pre-defined control components: widgets. They allow for interaction with a pointing
device such as a mouse, keyboard input or by touch events. The most famous widgets
are click buttons, text input fields and select boxes. Variations for different usages and
amounts of data are usual. An example of a comparable functionality but different
presentation layout is letting users choose one or more elements from a list of possi-
ble entries. For less than five elements a radio button group might be considered an
appropriate widget, for many elements a scrollable select box might be a more desired
solution. The abstract interaction object in this scenario is the same (“choose one ele-
ment out of n”), the concrete interaction objects are different (radio-button group and
multi-select box) (cf. [GriO1], p. [6]).

From a development perspective the Model-View-Controller (MVC) pattern is impor-
tant and widely adopted. It was first used in the Smalltalk-80 implementation [Ree78|
and introduces the three name-giving components model, view and controller. Models
represent the data entities with attributes and basic getters and setters. Views define
the presentation layer displayed on screen. Controllers act as the intermediate compo-
nents between models and views. They listen to events (e.g., interactions in the UI),
invoke methods on models and update views in turn. This separation of data, presen-
tation and the intermediate logic allows for flexible combination by forcing decoupling
of independent layers of a Ul application. Many programming languages, GUI frame-
works and application toolkits implement or adapt the MVC pattern — sometimes with
slightly different nomenclature and focus (cf. [Gos05]; cf. [Osm12]).

13

3.2.4 Limitations

The formalization approach inherent to MBUID concepts is based on the advantages
it provides in terms of efficiency and easier maintainability. Experiences made over the
last 20 years” show that there are some aspects limiting the usage of MBUID techniques
and mechanisms. Automation always demands for formalization and standardization
(cf. [Kla06], p. 2). This implies that the generated Uls basically follow a similar
sort of structure. Any “look and feel” features that are highly specific to the tasks
and the domain the UI is acting upon have to be manually specified and coded on
top of a generated basis ([GriOl], p. [2]). Uls that really support the user’s task
accomplishments and allow for efficient and context-aware usability experience need
to be highly specific. To describe such specific behavior and interaction patterns in a
formal model leads to contradiction in most cases. Formalization and specialization are
opposites to each other and concrete interaction metaphors are hardly expressible using
formal schematization.

Exploiting existing schema and model information for automating Ul development
will mostly lead to a form-based solution ([Sch96], p. 18) of the UI in question. The
principle of direct manipulation is difficult to be supported by an automated UI ap-
proach. The prototypes in this thesis are highly form-based, which is acceptable for a
basic functionality. Potentials for more elaborate Ul techniques and paradigms exceed-
ing forms as the interaction basis will be pointed out in place.

It is often stated that MBUID has not reached a main-stream level of acceptance in
the UT development and design sector ([Tra09], p. 12; [Meillal, p. 404; [Sze96], p. xxii;
cf. [Mye00], p. 10). Reasons for the lack of adaptations are the often verbose syntax
of UIDLs, the lack of out-of-the-box solutions (cf. [Meilla], p. 404) and the contra-
intuitive paradigm of formalizing UT development processes that much (cf. [Tra02], pp.
12fF).

3.3 Relation to Thesis Scope

The development of Uls as a common way of human-computer interaction is crucial to
any kind of application. Considerations about general paradigms such as the usage of
metaphors in Uls and more specific decisions on which Ul widgets to choose are essen-
tial when designing and implementing a UI for an application. The level of possible
formalization and the applicability of systematically generating parts of the UI influ-
ences a) the (manual) implementation expense and b) the user experience provided by
the UL

Applying these concepts to the thesis goal of possible Ul prototype solutions for
PriML, the focus is on the balance between formalization, i.e., basically treating all of
the model’s entity types in a similar way, and specialization, i.e., finding appropriate
metaphors and derived interaction patterns for each entity type. Since the model-driven
paradigm is key to this thesis the basic attempt is to automate similar steps in the Ul
development and to identify exemplary cases where further adjustment can improve
user experience.

"The earliest approaches in MBUID date back to the early 1990s.

14

4 Model-Based Software Development

The terms model-based software development, model-driven software development and
Generative Programming are closely related but are not considered synonyms. [Kla06]
states the difference between model-based and model-driven by defining that model-
based methods are not necessarily aiming for automation while model-driven approaches
take models as the basis for transformations, i.e., automation processes (cf. pp. 3f.).
The term Generative Programming is mainly used by [Cza04] and describes the method
of developing software with automation approaches (cf. [Kla06], p. 2). It focuses on
software system families rather than on single pieces of software. Usually models are
used as the input of generation processes ([Kla06], p. 13) and it aims at a complete
automation (cf. [Sta07], p. 37).

Generating software (components) is relevant to this thesis because using an XML
Schema model as the basis of a Ul follows the approach of automatically generating
source code. The model is the input, the Ul is the generated output. There can and shall
be no 100% automation in this thesis’ prototypes. Generators are used for repetitive
steps, manual additions and adjustments complement this generated source code.

Model-based software development can be considered to be a super-set to MBUID,
since every Ul is a piece of software, which is, when developed in a model-based fashion,
an example of model-based software development.

4.1 Goals

Possible advantages of generating software in general are stated by [Kla06] as (cf. pp.
50f.):

e consistent ID generation,
e performance,
e type safety and
¢ platform independence.
Furthermore, the following goals and principles are essential to generating software
components.

4.1.1 Efficiency

Generative approaches are considered to increase efficiency because potentially one
generator program is able to generate arbitrarily many software programs. Assuming
that the generator in question is set up appropriately it performs programming tasks
in a systematic, complete and repeatable manner (cf. [Kla06], p. 141).

15

4.1.2 Consistency

Consistency is a goal that generative approaches can support by performing tasks such
as ID generation, applying naming conventions® and ensuring the validity of references
between different pieces of software.

Generally generating source code can assist programmers by completing systematic
and thus automatable tasks. Generators, once set up properly, ensure consistency
throughout the components they generate (cf. [Kla06], pp. 2f.).

4.1.3 DRY (Don’t Repeat Yourself)

Rather a central principle but indirectly also a goal is the DRY principle ([Hun00],
pp. 27f.). It demands to assert data and information only once and to derive further
views from that assertion in other contexts if necessary. The DRY principle is one of
the crucial aspects that motivate generative programming and model-driven software
development. Keeping information in formal representations and generating software
based on these models realizes the DRY principle. It applies its deduplication goal for
higher efficiency especially when information changes and evolutions occur. Consistency
and propagation of information change is ensured when obeying the DRY principle.

Abstraction is the key requirement for DRY. When centrally asserting information in
order to reuse it there has to be a shared definition, i.e., abstraction thereof. Examples
of such shared definitions are configuration files, build files and models in general.

An example of a common use case of DRY is using one domain model for several
components of an application. The data base tables can be generated from it, the
objects in the application logic querying the data base, the Ul components used for
display and manipulation and the documentation (cf. [Hun00], pp. 28f.).

4.2 Methods

The methods that are described here are common in software generation although not
all of them are applicable in every Model-based software development (MBSD) use case.

Code Generators Based on models or, more generally put, formal descriptions, code
generators create source code (cf. [Sta07], p. 12). The formal description takes the role
of a configuration for the generation process. Generation happens before the software
is executed, i.e., at compile time. Interpreters have a similar goal as code generators:
they create output based on formal descriptions, but at run-time. Since interpreters
are not crucial to this thesis they are not described in depth.

Reference Implementation When generating software there exists the development
paradigm of setting up a reference implementation as the target of the generation steps
(cf. [Kla06], pp. 39ff.). The generator’s output is always compared to the reference
implementation and it is contiuously developed “against” it. The generator’s status

8An often named example is a consistent nomenclature for get and set methods in Object-Oriented
Programming (OOP).

16

is thus transparent in all development phases and the generator’s scope is precisely
comprehensible.

Domain-Specific Languages In software development abstraction is a key component
for distributing complexity. DSLs are often used to enable domain experts to assert
information about the domain in a more comfortable way without having to know many
technical details apart from domain-immanent aspects. XML is often used as the basis
for DSLs. It provides a stable syntax and a rich tool support for aspects like structuring
(XML Schema, Document Type Definition (DTDs)), querying (XPath, XQuery) and
transformation (XSLT).

Model-to-Model Transformations Since in most cases step-wise generation is neces-
sary there are different generators contributing to the end result (cf. [Kla06], cf. p. 6).
These different generators often need models of different abstraction levels (cf. [Sta07],
cf. p. 195). This makes model-to-model transformation a method frequently used by
MBSD.

An example of a model-to-model transformation is the XML Schema to Ecore trans-
formation in the Eclipse Modeling Framework (EMF). The input XSD(s) are iterated
and the first result is a representaton of the modelled entities expressed with the Ecore
meta-model. EMF reuses constructs of the XML Schema meta-model, expresses them
with constructs of the Ecore meta-model which contains information not directly avail-
able in XML Schema. This added information can be further used by source code
generations based on the Ecore model and would not directly have been present from
the model expressed in XSD ([Ste09], pp. 179f.).

Templating When generating source code (or potentially any other kind of text-
based content) templates are a common way of pre-defining a structure that can be
parametrized with concrete values. Static content is notated as is, complemented with
expressions containing parameters and/or more complex expressions to be evaluated
and filled in during generation (cf. [Sta07], pp. 146f.). Conditional output, repeated
output and the invocation of other templates in order to delegate specific processing
belongs to common template functionality.

Examples of software generation systems using templating are Acceleo [Ecl12a] and
Xpand/ Xtend [Ecll12¢]. XSLT as the main XML processing tool also uses templates
that can either be named and called explicitly and/or that can have a matching clause
containing XPath expressions identifying objects the template shall be applied to. In the
web development context templating mechanisms are frequently used to render HTML
fragments parametrized by (mostly) JavaScript Object Notation (JSON) [Cro02] data
and inject these produced fragments into the Document Object Model (DOM) [W3C05]
tree.

Combination of Generated and Manually Written Source Code Generations are
rarely used stand-alone but complemented by manually written source code. There
exist different methods of bringing both sorts of code together (cf. [Sta07] pp. 159f.).

17

An OOP-oriented paradigm is the three-level inheritance (cf. [Sta07], p. 161). The
generator creates two levels automatically, the third level is manually provided by the
developer. Methods and attributes are inherited and potential overrides and comple-
ments are applied. The generated code does not have to be manipulated by developers
to fit specific needs.

Another paradigm which is widely used, for example in EMF (see chapter 5.2.2), are
protected source code zones. These are marked with e.g. special comments and will
not be overwritten in new generation runs. Since EMF for example is Java-based, it
exploits JavaDoc comments and takes @generated tags into account. Whenever no
such tag is present or is changed to @generated NOT the respective source code block is
protected. This protection practice is criticized for intermixing source code irreversibly
and complicating maintenance (cf. [Sta07], p. 160).

4.3 Relation to Thesis Scope

Closely related to the MBUID paradigm described above, the more general approach of
MBSD plays a key role in this thesis scope. Generating software components, namely
UI components, from formal descriptions is the goal of the thesis. Evaluating different
ways of applying such methods on XSD file collections and demonstrating possibilities
for a potentially generic and adaptable approach is the connection between the concepts
described in this section above and the thesis as a whole.

Generation steps are the connection between models (be it a domain model or a
UI model as a special case) and source code. Many MBUID systems lack normative
generation/ transformation processes and leave this to specific implementations. This
is one limiting aspect of MBUID adaption in UI development (cf. chapter 3.2.4).

18

5 Modelling

Modelling? is a broad field and referenced in many research and practice contexts. It
is based on the concept of a model which in most cases is defined as a description of a
simplified part of reality (cf. [Kla06], pp. 12f.; cf. [Del07], pp. 10f.).

MBSD and MBUID approaches as described above require models as their configu-
ration input; that makes modelling in general and XML Schema modelling specifically
(since it is used for the PrIML vocabulary definition) an essential part of this thesis’
considerations.

5.1 Languages and Standards

Since describing models is an abstract process there have to be methods and tools
for making the results of modelling explicit. Declaratively asserting information about
models demands for languages enabling modellers to express the main types of modelling
properties (also see chapter 5.2 and cf. [Ste09], p. 17; cf. [OMG11a], p. 8):

Classes,
Attributes,
References,
Cardinalities and
Constraints.

Visualizing models is often used for presentation and human reception.

5.1.1 Unified Modeling Language

In order to increase standardization in modelling and to explicitly meta-model (cf.
chapter 5.2) the components commonly reused in modelling processes the Object Man-
agement Group (OMG) developed the Unified Modeling Language (UML) standard (cf.
[OMG11b]). It received broad adaptation for modelling issues in various domains such
as software development.

UML is not within the focus of this thesis, which is the reason for not explaining it
further.

5.1.2 XML-Related Standards

Especially for modelling XML-based languages (also called XML dialects) there exist
standards reflecting the specific XML features. Such features include the distinction
between elements and attributes, usage of namespaces and XML entities. The two

9This thesis uses the spelling modelling, not modeling; exceptions are direct citations and product
names.

19

basic approaches of declaring XML dialect structures are schema languages that are
themselves expressed with XML (XML Schema, RELAX NG and Schematron) and
non-XML-based languages (DTDs).

Attempts to convert XML declaration standard descriptions are made by tools such
as Trang [Cla08]. It takes an input definition (in one of the formats RELAX NG (XML
syntax), RELAX NG (compact syntax), DTD or XML instance file) and transforms it
into the desired output schema language. Possible outputs are both RELAX NG syntax
standards, DTD and XML Schema.

DTD XML is a subset of the more generic Standard Generalized Markup Language
(SGML) [W3C95] standard for defining markup languages (cf. [W3C08]). To declare an
SGML-conform markup language there exists the DTD standard. It enables modellers
to define a grammar asserting the permitted structure of instance documents conforming
to the DTD (cf. [W3C08]). The components of a DTD are element definitions and its
cardinalitites, attribute definitions and XML entity definitions. DTDs themselves are
not XML-based but introduce a grammar syntax of their own. The reusability of
components is not supported, which can lead to repetitive assertions when designing
DTDs. Furthermore, DTDs are namespace-unaware (cf. [Wik12b]), which limits their
potential use cases when vocabulary combination is needed.

XML Schemal® XML Schema is a language for declaring the structure of XML doc-
ument sets. XML Schema can express any construct also expressable with DTDs, but
the reusability of declared structures in more than one context and the support for
different modelling patterns and paradigms'!' makes the use of XML Schema in many
cases more comfortable than DTDs. Namespace-awareness and the fact that it is itself
XML-based are further advantages. The XML Schema component diagram provided
by the W3C is depicted in figure 5.1.

Mainly, XML Schema is for declaring data types that instance documents and their
elements can use. XML Schema distinguishes between simple and complex data types.
Simple types are what in other contexts is referred to as primitive types (strings,
booleans, integers etc.). There exists a definition of primitive types, the XML Schema
Datatypes [W3C04d]. These are a sort of canonical type vocabulary that is widely
used, even in other contexts.'? Complex types, as XML Schema defines them, allow
elements to contain further tree structure and/or attributes. Allowed group structures
in complex type definitions are

e sequence: order-sensitive group of sub-elements,
e choice: one of the listed sub-constructs is allowed and
e all: all of the listed sub-elements have to occur, irrelevant in which order.

These can be nested in complex manner to allow for elaborate representation of
data structures. Furthermore, group constructs can themselves contain occurrence con-

for this section cf. [W3C04b], [W3C04c] and [W3C04d]

Hgee [Cos12] for considerations about when to globally/ locally declare components of XML Schemas

2The Resource Description Framework (RDF) data model [W3C04a] for example reuses the XML
Schema data types and is a standard that can, but does not have to, rely on the XML standards.

20

Motation Declaration

notation declarations attribute declarations

system identifier
public identifier

type definitions attribute group definitions

element declarations model group definitions

c
Element Declaration S
scope w |dentity-constraint Definition
value constraint =1 identity-constraint category
rillable ! Selector
substitution group affliation I fields
substitution group exclusions ?—'— referenced key
dentity-constrihint

disallowed substitutions defiritions !
1
abstract I hodel Group Definition
= o = 1
2 =2 1
= “E ' -
5 5 f 2
- =1 1 2
2 1 contert type =
..% 1 E
1 =1
| £
1
! iZomplex Type Definition
. e 1 g .
Simple Type Definition j;ﬁmtylgﬁ derivation method
facets <final
final content type Eletl_’ElF:t i
variety <>prohibited substitutions
£ £0 g0 30
= = = =
2 E 2l =
® = @ =z
o +— o =
= = = =
O o f
(] (] [a:]
1] (o]
_= _=

Aftribute Lse

straint

attribute declaration '.

ge definition

Aftribute Declaraton

attribute uses
i

Attribute Group Definitian

scope

value constraint

D is a named component and has two additional . is an urrnamed component
properties - name and target namespace

Figure 5.1: XML Schema components; [W3C04c]

1| <xsd:element name="requirement">

2 <xsd:complexType>

3 <xsd:complexContent>

4 <xsd:extension base="priml_element_basetype">

5 <xsd:sequence maxOccurs="1">

6 <xsd:element name="statemachine"

7 type="chartRefType" minOccurs="0"

8 max0Occurs="1" />

9 <xsd:element name="usecase_diagram"

10 type="chartRefType" minOccurs="0"

11 max0Occurs="1" />

12 <xsd:element ref="format:image" minOccurs="0"
13 max0Occurs="unbounded" />

14 <xsd:element ref="val_criteria" minOccurs="0"
15 maxOccurs="1" />

16 <xsd:element name="references"

17 type="references_requirement" />

18 </xsd:sequence>

19 </xsd:extension>

20 </xsd:complexContent>

21 </xsd:complexType>

22 <xsd:unique name="Unique_References_0f_Requirement">
23 <xsd:selector xpath="data:references/*/x" />

24 <xsd:field xpath="QrefId" />

25 </xsd:unique>

26 ||</xsd:element>

Listing 5.1: Requirement XML Schema fragment

straints, see below. Any of the constructs sequence, choice and all can be aggregated
in named group constructs in order to be referenceable.

Both simple and complex type constructs allow for extending and restricting exist-
ing type declarations. Base types for extension and restriction can be XML Schema
datatypes or user-specified ones.

Elements defined in an XML Schema are characterized by the content model they
are typed with. The content model contains the data type (simple or complex) and
the attributes they may carry. Attributes are always of a simple type, i.e., there is no
further structure possible within attribute values. However, there exists the possibility
to type attributes with list types. Thus, a space-separated list of type-conforming values
can be contained in one attribute value and will be interpreted as such.

Attributes can be grouped in attribute Groups in order to be referenced together from
other element definitions.

Cardinalities in XML Schema can be defined more fine-grained than in DTDs. Exact

22

numerical values can be asserted as lower and upper bounds,'® complemented by the
value unbounded applicable to the upper interval bound value. Declarations of attribute
use are the same as in the DTD standard: possible values are required, optional and
prohibited. Element and group cardinality defaults to exactly one, attribute use defaults
to optional.

Listing 5.1 shows the XSD definition of PrIML element requirement that holds infor-
mation about software requirements. The element is defined by an anonymous complex
type that is directly inserted as a xsd:complexType element (line 2). This type is an
xsd:extension of the general PrIML base type (line 4). The elements statemachine
(line 6), usecase_diagram (line 7), format:image (line 8), val_criteria (line 9) and
references (line 10) are specific to the type definition. All of them can, but do not
necessarily have to, occur once (attributes minOccurs and maxOccurs contain these car-
dinality constraints). The elements are wrapped in an xsd:sequence element (line 5)
that itself has a maxOccurs attribute. In addition to the sub-element structure defining
the element type there is an xsd:unique construct (line 15) ensuring that requirement
IDs are referenced uniquely.

XML Schema describes the structure of the modelled domain and defines the valid
syntax for schema-conforming documents. Validating processes first check documents
for well-formedness and in case they pass this check positively they are validated against
the referenced schema (cf. [W3C08]).

RELAX NG and Schematron Two XML-based specification languages for the de-
scription of XML structures that are not as widely adopted as DTDs and XML Schema
are RELAX NG [REL11] and Schematron [Sch12].

RELAX NG formulates the goal of providing a simple and easy-to-use way to describe
the structure of XML documents. Its instances are themselves XML documents. A full
syntax and a simplified syntax are included in the RELAX NG standard. It reuses
the XML Schema datatypes and enables support for any external XML-based datatype
vocabulary.

Schematron is in contrast to DTDs, XML Schema and RELAX NG not a grammar-
based but a tree pattern-based approach for defining XML document structures (cf.
[Sch12]).

RELAX NG and Schematron are part of the Document Schema Definition Lan-
guages (DSDL) standard family (cf. [BrolO]). They are mentioned here for reasons
of completeness, the PrIML design decisions in chapter 2.3 made XML Schema the
document-describing language for the vocabulary. Thus, XML Schema is the only such
language relevant to this thesis’ considerations.

5.2 Meta-Modelling

As described above, modelling is the process of representing “real” concepts in an
abstract manner. Taking this abstraction one step further, meta-modelling in turn
describes the components used in models (cf. [OMG11a], p. 29). The prefix “meta-”
is of Greek origin and means — amongst other connotations — “after”, “beyond” (cf.

13Exact cardinalities are possible in DTDs as well but require a verbose notation.

23

uonEROSSY

m <0

Ul = PUHUORIS A SIAUE R | UDDER+

Jajaweley

.sz&mE%L _ a3 A dnIan

|0 uopEpossYBULMOS

10 uopeosses

0

onEzyEaUSEY,
ool

=0
s uopdamgnased+ uofesado+
Ipasapio} 0 o
L= 1] jean: i : dackeiny+
{paispict .0 1o L = [1-0] 48fE) - Banop+| uogeladgpaLAa s+
JPEMEIEdRaUAD UONEIaH0+ and) = Ueajoog | ankiuns]+
as|e) = UBa|N0g - PRIBPIDSY+
uonesado
+ 0
EEE|IBUNE
¥ 0
s8I0+
10 spsoddor+
10 ARSI A
asje) = Uss|00g : piSi+
p " Uei00g ; aysodwansys| (PREPIC}E 0 o
paispicl L0 PUIREUMOH 00U = pupUOEReABEy < Uonehabes
232} = Ueai00d | pastansis| SOHHREUMD: =B+
{P24apAn} 77 PUSMSHMEW fyadoig sse|)
_ BIMEILIEIRIIRNS _ ADHISSELD
L =11 0] 42621 @ Jaano)+
1= 0] argenpagunon © addn
a4} = UEs00q © SnkiunE+
ag(e) = UBE|00F | PAUSIDSH
JNOHIAFAN XA INDIDIPITA] XYL edAy

|emuahs

uoiezye.2UR6Y yogezyesuay

ﬁ sasser on3) 1aomg abexoed

; [OMG11al, p. 33

iagram

OMG EMOF class d

Figure 5.2

24

[Lid12]). It is a common prefix to express an increased level of abstraction compared
to the term prefixed.

The languages used to describe models such as UML and XML Schema are themselves
models containing components which form the basis for modelling. Thus they are
referred to as meta-models. Taking the abstraction even further, models that describe
the structure (i.e., the common features) of meta-models are called meta-meta-models.
Although there is theoretically no limit for ever-further abstraction (cf. [Sta07], p. 62),
meta-meta-models are usually described with their own concepts and thus the meta-
meta-model is the most abstract level explicitly described (cf. [Sta07], p. 31; cf. [Ste09],
p. 17). The most prominent meta-meta-model is OMG’s Meta Object Facility (MOF).
Ecore from the EMF context is its own meta-meta-model ([Ste09], p. 17).

5.2.1 Meta Object Facility

From the OMG standardization consortium [OMG12] responsible for standards like
UML and XML Metadata Interchange (XMI) comes a meta-model called MOF. Figure
5.2 depicts the entity types described by OMG’s Essential MOF (EMOF) meta-model.

It is not further described because of its lack of applicability but see the similarities
to EMF’s Ecore below.

5.2.2 Eclipse Modeling Framework and Ecore

In the context of the Eclipse IDE there is the EMF project dealing with modelling,
model standard integration and model-driven Java application building (cf. [Ste09], p.
xxiii). It has reached a good industry adoption and forms the basis for further UI and
general software development steps. Thus it enables the integration of modelling and
programming (cf. [Ste09], pp. 15f.).

The core of EMF is the standard Ecore. It is a meta-model that integrates UML, Ra-
tional Rose, XML and Java (cf. [Ste09] p. xxiii, p. 14). Mappings from XML Schema to
Ecore, UML to Ecore and vice versa respectively make model-to-model-transformations
and model-to-code-transformations possible. Furthermore EMF provides mechanisms
for generating Eclipse-based editors conforming to the underlying model. Such editors
are functional Eclipse plugins that enable users to Create, Retrieve, Update and Delete
(CRUD) model-conforming data instances.

Chapter 6.3 describes the generation steps on top of Ecore and other complementing
models. EMF practices the concept of dividing different modelling aspects and referring
to these separate models in the generation processes. Figure 5.3 shows the hierarchy of
the Ecore meta-model.

5.2.3 Similarities

Ecore!* and EMOF share some entity types: both contain a Class construct which
inherits from a more general Classifier. Also StructuralFeatures are part of both
models. EMF calls the specialized manifestations Attributes and References, EMOF

The leading E in Ecore’s entity names is omitted respectively since it carries no semantics.

25

EObject

7

ElModelFlement
| | |
EFactary EMamedElement EAnnatation
EFackage EClassifier EEnurmLiteral ETypedElement
EClass EDataType EStructuralFeature EQperation EFarameter
EEnum EAttribute EReference

Figure 5.3: Ecore meta-model hierarchy; [Ecl06b]

calls it Property. Operations and its Parameters are another similarity in the con-
structs of both models.

FEcore has a practical use case, i.e., forming the basis for mappings to XML Schema,
UML and especially Java, EMOF does not directly target such a specific use case.

5.3 Relation to Thesis Scope

The approach of generating Ul components requires information about the nature of
these components. Which kinds of widgets have to be generated and in which way the
entity types of the underlying domain relate to each other is necessary for the generation
processes. Models like the PrIML XSDs contain this sort of information and are used
as the parametrization for the code generators.

Meta-modelling and meta-meta-modelling are relevant to this thesis because when-
ever models and modelling languages (e.g. XML Schema) are used, their structure
determines the expressivity of the models described.

26

6 Practical Solution Approaches

The implementation described in this thesis can be formally expressed as the attempt
to weave together different transformation and generation steps that produce editors
for XML Schema-defined DSLs. PrIML is used as the concrete example of such an
XML Schema-based DSL. The goal of this chapter is the description of two different
prototypes of semi-automatically developed tools for CRUD operations on XML data
conforming to the source schema.

Using the conceptual and technical basis of the chapters above this chapter describes
the process of choosing the development and runtime framework, the steps taken in the
code generation processes and the manual adjustment aspects. Two different approaches
are taken to achieve the goal just described: a browser-based HTML / Cascading Style
Sheets (CSS) /JavaScript MVC application and an EMF/ Extended Editing Framework
(EEF) Eclipse plugin. The prototypes have been developed in the thesis period by the
author. The thesis CD-ROM contains screen casts demonstrating the processes and the
generated prototypes complementing the descriptions of this chapter and the detailed
explanations in appendix A.

Being able to compare is the most important reason for choosing these two parts in
the thesis’ practical development instead of focusing on only one of them. EMF and
the accompanying standards are the example use case for using an existing modelling
and generation framework with very high abstraction and several levels of software
components interacting with each other. Forming a concept and manifesting it in self-
developed generation processes for a web application is the complementary approach —
it focuses on light-weight development paradigms. Understanding and using external
code generators on the one hand and developing own code generators on the other hand
are the two aspects this thesis’ chapter demonstrates. In case of the web application
development aspect of this chapter there are always two layers of interest that have to be
considered: a) the desired architecture of the output application and b) the necessities
for the generator functions creating the application components. It needs to be clear
what features the application shall have and how they are achievable in order to set
up the generator appropriately. These sorts of concepts already exist for EMF/EEF;
following and comprehending rather than reinventing this given abstraction hierarchy
is essential when using EMF and EEF.

When developing the concepts for the prototypes, the idea of using a UIDL (see
chapter 3.2.3) came to mind. Reasons for not using UIDL concepts and languages
were:

e anticipated extra costs in terms of several needed transformation steps (according
to the author’s brief considerations)
— XML Schema to AUI,
— AUI to CUI and

27

— CUI to FUI
e the lack of a real benefit, since the often-mentioned reuse paradigm does (at
least in the direct thesis scope) not apply; EMF/EEF uses its own models and
transformation methods and a UIDL is not needed or supported there.

Picking up the working hypothesis that an XML Schema provides enough information
for a UI, using a UIDL such as the briefly described UsiXML (see chapter 3.2.3) is
omitted and processes directly working with XML Schema information — or directly
derived information — are chosen. A transformation of XML Schema constructs to AUI
elements is surely contained in the generation processes of both practical solutions, but
it is not explicitly expressed separately from the final Ul components. An example
for such implicit transformations is the design decision to integrate simple-typed sub-
elements of an element type and attributes (that are by definition simple-typed) into
object properties. The mechanism of representing elements with an enumeration simple
type as “select one of n” interaction objects that are manifested as drop-down menus
in the Ul is another example for skipping an explicit AUI abstraction layer.

6.1 Requirements for User Interface Solution

The analysis of PriML’s current state and its workflow integration as well as the research
on common practices in generative (Ul component) programming led to two appropriate
prototype solutions. The decision to compare two different approaches has the following
reasons:

e it forms a concrete demonstration case for the ability to generate different ap-
plication prototypes out of one source model and hence stresses an advantage
aspect of model-based methods,

e each of the two approaches can illustrate individual aspects of generation processes
and

e one approach reuses an existing code generator framework, the other one is a
manually developed generator combination.

These three main aspects enable a broader and more manifold perspective on generat-
ing UI components and the underlying concepts and design decisions that are possible.

The requirements for a PrIML user interface and its generation are:'

e The Ul is able to run on Windows, Linux and MacOS X

The Ul is generated as completely as possible; manual customizations can be
applied to fit needs more exactly

Schema changes are reflected in the UI after a regeneration

Manual customizations are protected from being overwritten by a regeneration
The user does not need to enter XML markup

The user can combine XML data entry and Ul-based data entry

The UI suggests components and/or values where applicable

5These were gathered by the ISCUE management and staff together with the author at the beginning of
the thesis period as the basic requirement set. Potential refinements are described in the EMF/EEF
chapter.

28

The UI allows user to deep-copy (and manually adjust) existing components
The UI provides undo and redo functionality

Approaches of direct manipulation (e.g., drag&drop) are enabled where applicable
Element values of mixed content type (especially format:formattedText and its
sub-types) can be entered with an appropriate rich text editor widget

e PriML’s XSLT processes can be invoked from the Ul

The following two chapters 6.2 and 6.3 describe the characteristics of the two ap-
proaches taken. Similarities and differences between them are pointed out in chapter
6.4. It will also be discussed to what extent the requirements stated above can be met
by the two solutions.

6.2 Browser-Based Application

Applications that run in web browsers build on technologies that exist for several years
but have evolved much since then (cf. [Macllb], p. 1). The most important languages
and paradigms are defined first in order to allow for a better comprehensibility.

HTML(5) and CSS(3) HTML is the basic markup language for hypertext documents
and its latest development version is 5. The W3C is mainly responsible for its state,
drafts and Application Programming Interfaces (APIs). HTML5 [W3C12b] targets a
greater flexibility in terms of syntactical constructs, introduces language elements for
better semantic markup reflection (section, article, etc.) and provides APIs for e.g.
client-side data storage and canvas-based graphics rendering. While HTML is respon-
sible for the markup, structure and content of web pages, CSS provides constructs for
styling these elements. Positioning, visibility, colors, borders and the appearance of
form elements are key components of this style sheet standard. There exist libraries for
cross-browser support and richer features in the style sheet context as well — Syntacti-
cally Awesome Stylesheets (SASS) [Cat12], LESS [Sell2] and Stylus [Sty12] are some
of the attempts to create super-sets of CSS and enriching it with variable support,
function definitions and thus a higher reusability and consistency.

JavaScript/[ECMAScript/CoffeeScript JavaScript is a scripting language originally
only used for singular use cases of letting a web page respond to events or dynami-
cally change content. With its standardization as FCMAScript [ECM12] it could gain
importance over the years and is by now the most essential programming language in
client-side web development. Other languages such as CoffeeScript [Cofl1] are designed
as super-sets of JavaScript, introducing syntax shortcuts, providing a native class sup-
port that JavaScript itself lacks and offering a clearer syntax in general. CoffeeScript
compiles into JavaScript and is becoming popular in web application development (cf.

(0°G12)).

Document Object Model and JavaScript Frameworks The aspect of dynamically
changing web page content in reaction to user interaction (events) and data updates
makes access to the page’s structure necessary. The W3C standard DOM encapsules

29

30

Figure 6.1: Workflow generation of the browser-based application

the HTML page structure and allows access via a JavaScript API. Every browser engine
supports its own manipulation methods and uses a different nomenclature. For the in-
tegration and consistent access methods there are JavaScript framework libraries such
as Prototype [Prol2], mootools [mool2] or the wide-spread jQuery [jQul2a] that intro-
duce an intermediate abstraction layer. The API they provide is internally mapped to
the specific browser engines and versions available and is thus hiding these differences
from the developer.

AJAX and JSON For asynchronous communication between server and client side
JavaScript provides XMLHTTPRequests [W3C11b]. As with DOM manipulation, every
browser has slightly different notions and syntax conventions. jQuery for example offers
comfortable ways for wrapping these specifica. The paradigm of asynchronous requests
from the client to the server, the mechanisms of reacting to responses and the processing
of these data responses in callback functions is called Asynchronous JavaScript and
XML (AJAX). Originally XML was the designated serialization format because of its
standardized syntax and wide-spread tool support. Over the years the advantages of
the more light-weight and immediately JavaScript-digestible JSON serialization format
[Cro02] has lead to often JSON-focused AJAX transfers.

Model-View-Controller on client-side The evolution of web pages to often fully fea-
tured applications in the browser raises the necessity of software architecture, especially
on the client-side. Since for example PHP Homepage Pre-Processor (PHP) and Ruby
development libraries already support the MVC paradigm for some time (cf. [Zenl2];
cf. [Hanl2]) it became only recently common on the client-side to apply architectural
concepts. The needs for maintainabilty, stability and flexibility apply for web appli-
cations as well as for native client software (cf. [Macllb], p. 2). In the last years
many MVC libraries for JavaScript were developed with comparable concepts but with
different levels of formalization (cf. [Osm12]). Spine [Mac12] and Backbone [Doc12] for
example are more light-weight than frameworks such as ExtJS [Sen12].

These standards briefly defined above form the general basis for (especially the client-
side of) web applications. The prototype introduced in this chapter builds on top of
them as well and adds the aspect of how to generate many parts of such an application
based on the existing PrIML XSDs. The desired architecture is the MVC paradigm,
Spine and Backbone are both adapted. Spine is itself written in CoffeeScript and
thus seamlessly supports CoffeeScript, it is the scripting language of choice for the
Spine components. Backbone (and specifically the extension Backbone-relational, that
is used in the prototype) has reported limitations in supporting CoffeeScript, hence
JavaScript is also a target generation language. As stated before, the graphical and
usability aspect of the application is not the main focus, the development is designed
to be a proof of concept for generating models, views and templates in order to have
a working interface. Another goal of the web application is to demonstrate the power
of client-side applications — the prototype does not need a server side in order to be
functional. For persistence reasons a server side would become necessary but the current

31

state of the application is not depending on it. For considerations about moving state
to the client-side cf. [Maclla].

Figure 6.1 shows the workflow to generate the browser-based application. The PriML
XSDs are processed by the Python XML Bindings (PyXB) generator script pyxbgen
which produces one Python module per input XSD file. Out of these there are generated
three kinds of application components: models, views and controllers. The models are
manifested in the form of Backbone.RelationalModels, views are realized through
jQuery templates [jQul2b] and the controllers conform to the Spine.Controllers class
[Mac12]. In addition to these three sorts of components, Jsonix bindings complement
the application in order to serialize the data to XML.

Figure 6.2 shows a screen shot of the browser window containing a requirement group
with its XML serialization.

Following the MVC paradigm, the following three chapters describe the steps taken
to generate models, views and controllers. CoffeeScript is chosen complementarily to
JavaScript as the browser scripting language because of the following reasons:

e native class support (calling super calls the same method of a potential super
class; this feature is more verbose in plain JavaScript),

e cleaner syntax and thus a better readability,

e more elaborate language constructs and

e consistent compilation into JavaScript.

6.2.1 Generating Models

The original approach in creating models was to only use the Jsonix library [Jso12] for
JavaScript-XML bindings. The library is designed to provide light-weight mechanisms
to

e enable users to define mappings from XML to JavaScript (and vice versa) by
hand,

e provide methods to marshal and unmarshal data and

e generate bindings automatically through a Java command line tool.

Jsonix is also available as a Java XML Bindings (JAXB) [Jav12] plugin and can be
customized in the same way as JAXB through .xjb binding directives. In first test
generations Jsonix proved very promising in finding a way to marshal and unmarshal
data directly on the application’s client side. More detailed analysis showed that a
direct, uncustomized form of the XSD-to-JavaScript generation script contained in-
consistencies. Elements with the same name (but in different schema context, i.e., of
different anonymous types) were not resolved to different classes and thus information
loss occurred. Manually writing or generating such bindings is anyway possible and
these processes can themselves pay attention to consistency. See chapter 6.2.4 for a
description of this prototype’s approach to the generation of this kind of mappings.

Further research for similar tools and having the further use with generation scripts
in mind led to the PyXB Python module [Bigl2]. It has the same goal, generating
bindings, but targeting Python classes. It did not show similar inconsistencies as de-
scribed above but resolves elements and types bi-uniquely and is even more verbose

32

TONRTLIONT
wondiosap
Pt

wawannbal ppe | Juawmmbax

HHQ.D.NDHHD.WHM

| dnoib wawannbal sy wondiosap
auren

aseq

£gl dnoigTbay mg pr

S[qeun=1

B dnoib uawannbal ppe | :dnois juawammbaz

[‘ssaueiaeippe | soowespes

weiBeip~asesasn ppe | weiSep aseoasn

[supewsrs e | sugoemares
Kiojsuy ppe | ~A1015m) !

BEAEY A
TUONETIFONN
wonduosap

P

(0}

<dnozb jusmezinbaz:pd/>
<uUoT3PmIoIUT :gd/><ucTiruIozut: od>
<uotadrtaosap:od/><uctadraosap:od>

<dnozb juswaztnbaz:gd/>

Juswaunnbal ppe

<UOT1BWIOTUT:
<uoTadrisssp:gd/ />t sproy dnoIib auswsITnbax

W =SB

wEZT 4noIn bay MS,=DPT ,3NI1,=3Tdeur=z dnozb ausw=zitnbaz
< /ausw=zTnbaz: od>
w=2658q: TUX

2n13,=2TqUUTI3I 135905 THIZd/BI0- aTduexs - mumm;

33

tion screen shot

ica

Web appl

Figure 6.2

i . ' n unm.bwndwvmn"_uuv E

4

Wiy EpUl/23els pueTuoneauab uonessuabTdde gam/q o /queiRIse N 3/ SR

-@ A - ELIN _

when it comes to reflecting cardinalities and grouping in the XSD definitions. Further
advantages are a) Python’s convenient mechanisms for inspecting its own structures
(i.e., modules, classes, etc.) as an elegant basis for further generation steps and b) the
fact that Python is more and more widely adapted as a server-side scripting language
in web applications.

The author developed the Python module pyxb_to mvc_web_app with the processes
and methods necessary for generating the models as extensions of RelationalModel
out of the Python classes provided by PyXB. A two-fold process was applied:

1. resolving a Python dictionary which directly reflects the (potentially deeply nested)
XML Schema groups, elements, attributes, their cardinalities and fixed/ default
values and

2. flattening these dictionaries into structures that provides a list of possible child
elements and attributes with their “acummulated” minOccurs computed as the
product of all minOccurs from the respective element up to the root XSD group
and the max0Occurs computed analogously (any unbounded value for a maxOccurs
turns the end result into unbounded)

Flattening the constructs from XSD leads to informatin loss since a flat element-
attribute list does not in all cases reflect the expressivity that XML Schema’s grouping
mechanisms provide, especially in combination with the cardinalities applicable on al-
most all construct levels. Accummulating the cardinalities (see listing 6.1) transports
most of the original cardinality information, but the order of groups is an aspect that is
lost by the flattening. This trade-off is made in order to prevent the processes and the
resulting Ul from becoming too cumbersome and verbose. Reflecting every group and
cardinality detail in the UI would possibly create contra-intuitive widget combinations
since the group level of XSDs is not designated to be explicitly perceived by end users.
This simplification thus is a method of hiding originally existing complexity from the Ul
user — the generation processes do need to handle the full complexity to such a degree
as the flattening needs to be applied to the original complex structures.

A model is created for each complex XML Schema type and each such model is an
extension of Backbone.RelationalModel. Within a model class every simple-typed
sub-element and every attribute of the flattened structure derived from XSD leads
to a data field. Complex-typed sub-elements are reflected as relations linking to the
respective sub-element’s model class. The model for the requirement group is shown
in listing 6.2 (see appendix A.1.2 for explanations on nomenclatures for anonymous

types).

6.2.2 Generating Views

In light-weight web development libraries such as Spine, MVC-conforming views are
often HTML fragments rendered into the DOM (cf. [Macl2]). These fragments can
be represented by templates (cf. chapter 4.2), in this case jQuery templates. These
offer common template functionality such as conditional rendering of content, invoking
other templates for rendering sub-parts and loop constructs. There are basically two
ways of storing jQuery templates: a) in script elements of their own, marked with a
type="text/x-jquery-tmpl" attribute in order to distinguish them from usual Java-

34

Script script elements, and b) in string variables. In this case string persistence seems
more appropriate since it allows for the processes to store all templates in one JavaScript
file (potentially even in one data structure) and reference this one file from the static
HTML file that bundles the application parts. This abstracts out the concrete number
of templates generated and their specific names. Including the template JavaScript
file which can follow a static nomenclature will always ensure covering all generated

templates.

Data type HTML construct

xsd:string <input type="text" />

xsd:boolean <input type="checkbox" />

xsd:decimal <input type="number" />

xsd:float <input type="number" />

xsd:double <input type="number" />

xsd:duration <input type="text" />

xsd:dateTime <input type="dateTime" />

xsd:time <input type="time" />

xsd:date <input type="date" />

xsd:gYearMonth <input type="date"
pattern="([-17[0-9]1{4,}[-1[0-91{2})" />

xsd:gYear <input type="date" pattern="([-]17[0-9]1{4,})"
/>

xsd:gMonthDay <input type="date"
pattern="([0-9]1{2} [-]1 [0-9]1{2})" />

xsd:gDay <input type="date" pattern="([0-3][0-9])" />

xsd:gMonth <input type="date" pattern="([01][0-9])" />

xsd:hexBinary <input type="text" />

xsd:base64Binary <input type="text" />

xsd:anyURI <input type="url" />

xsd:(NAME <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.]*
([:]1[a-zA-Z_] [a-zA-Z_0-9-.1x)?)"/>

xsd :NOTATION <input type="text" />

xsd:normalizedString <input type="text" pattern="(["\t"\n~\r 1*)"
/>

xsd:token <input type="text" pattern="(["\t"\n~\r 1*)"
/>

xsd:language <input type="number"
pattern="[a-zA-Z]{1,8} (-[a-zA-Z0-9]{1,8}) "
/>

xsd : NMTOKEN <input type="text" />

xsd :NMTOKENS <input type="text" />

xsd:Name <input type="text"

pattern="([a-zA-Z_:][a-zA-Z_0-9-.:]1%)" />

35

xsd:NCName <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.1%)" />
xsd:ID <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.]*)" />
xsd: IDREF <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.]1%)" />
xsd: IDREFS <input type="text"
pattern="(([a-zA-Z_] [a-zA-Z_0-9-.1*[1)x)" />
xsd:ENTITY <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.]1%)" />
xsd:ENTITIES <input type="text"
pattern="([a-zA-Z_] [a-zA-Z_0-9-.1*([]
[a-zA-Z_] [a-zA-Z_0-9-.]1%)*)" />
xsd:integer <input type="number" min="-2147483648"
max="2147483647" step="1" />
xsd:nonPositiveInteger | <input type="number" max="0" step="1" />
xsd:negativelnteger <input type="number" max="-1" step="1" />
xsd:long <input type="number" min="-9223372036854775808"
max="9223372036854775807" step="1" />
xsd:int <input type="number" min="-2147483648"
max="2147483647" step="1" />
xsd:short <input type="number" min="-32768" max="32767"
step="1" />
xsd:byte <input type="number" min="-128" max="127"
step="1" />
xsd:nonNegativeInteger | <input type="number" min="0" step="1" />
xsd:unsignedLong <input type="number" min="0"
max="18446744073709551615" step="1" />
xsd:unsignedInt <input type="number" min="0" max="4294967295"
step="1" />
xsd:unsignedShort <input type="number" min="0" max="65535"
step="1" />
xsd:unsignedByte <input type="number" min="0" max="255"
step="1" />
xsd:positivelnteger <input type="number" min="1" step="1" />

Table 6.1: Mapping between XML Schema types and HTML constructs; cf. [W3C04d]

The Python module for generating the models based on PyXB’s output was com-
plemented by functions for generating the view templates consistently. The flattened
elements and attributes dictionary described above was reused for deriving the tem-
plate strings from it. Every type (simple, complex and even each of the native XML
Schema data types) gets its own template. Those for simple types contain form ele-
ments reflecting the underlying type definition (see table 6.1). Enumeration types are

36

transformed into <select>-<option> blocks.'® Every extension of xsd:string with a
pattern attribute is mapped to an <input type="text" pattern="..."/> where the
dots in the pattern attribute are replaced by all patterns the XSD provides (there might
be arbitrarily many) separated by pipe characters (|) and wrapped by brackets alto-
gether. Thus all patterns are taken into account when it comes to checking the validity
of the entered text.

Complex type templates contain areas for possible sub-elements. Complex sub-
elements can be added via buttons, simple ones are directly inserted — once in case
they are optional or required exactly once, minOccurs times in all other cases. It is
necessary to use a Pythonic templating system to generate jQuery templates out of
the type definitions. The templating library mako [Bayl12] was chosen because of its
rich feature support. Since both templating systems (mako and jQuery tmpl) share
common expression syntax constructs for evaluation contexts such as dollar signs ($)
and curly brackets ({ and }), escaping these characters in the Python template strings
is necessary in order to transport them into the jQuery template output. Listing 6.3
shows the template for requirement groups.

6.2.3 Generating Controllers

Being the connection between models and views, the controllers have to listen to a) Ul
interaction events as the clicks on addition and deletion buttons and b) model events
(creation, update, etc.) of data instances and updates of sub-elements. Spine provides
a Spine.Controller class with common methods. Mouse events as clicks on add ...
buttons can be mapped to class methods as the event handlers in the events map.
Methods for the creation and addition of sub-elements and their respective controllers
are asserted on the class and connected to events by attaching additional event handlers.
Rendering is accomplished by the render method, save_changes sets values on simple-
types elements and attributes. See figure 6.4 for the requirement group controller.

For each newly added sub-element a new controller of the appropriate kind is gener-
ated and is responsible for handling updates of the sub-element’s properties.

6.2.4 Generating JavaScript-XML bindings

Jsonix requires three parts in a JavaScript-XML mapping package. First of all, all
complex types have to be declared in order to make them referencable. After these
declarations that only set up the respective object and a name property, all complex
types are defined in terms of their content model. Attributes and sub-elements are
listed and their types are referenced (targeting the aforementioned declarations). The
last information necessary for marshalling JavaScript objects into XML is a list of all
possible top-level elements.

Generating these three parts is achievable in a straight-forward way, iterating all
complex types of the PyXB package in question. Listing 6.5 contains the parts for
mapping requirement group JavaScript objects to their XML serialization.

16\ echanisms for a conditional rendering of five or less enumeration values as radio button groups were
considered but omitted; this distinction could be added for usability reasons

37

1] €

2 "attributes": [

3 {

4 "dataType": {

5 "namespace": "http://www.iscue.com/xml/2008/11/
priml_data",

6 "local": "primlID"

7 }

8 "defaultValue": null,

9 "required": true,

10 "name": {

11 "namespace": null,

12 "local": "id"

13 },

14 "fixed": false

15 3,

16 [...]

17 1,

18 "elements": [

19 {

20 "elementName": {

21 "namespace": "http://www.iscue.com/xml/2008/11/
priml_data",

22 "local": "information"

23 },

24 "minOccurs": O,

25 "maxOccurs": 1,

26 "type": {

27 "namespace":"http://www.iscue.com/xml/2008/11/
priml_format",

28 "local": "formattedText"

29 },

30 {

31 "elementName": {

32 "namespace": "http://www.iscue.com/xml/2008/11/
priml_data",

33 "local": "requirement"

34 3,

35 "minOccurs": O,

36 "max0Occurs": null,

37 "type": "CTD_ANON_72"

38 1,

39 [...]

40 1,

41 "name": "CTD_ANON_60"

42 || ¥

Listing 6.1: Complex type for requirement groups flattened (serialized in JSON; extract)

38

© 00 O T W N~

W W NN DNDNDDDDNDDNDNDN DN = = = = e e e
— O © 00 IO U WN RO WO U W~ O

var CTD_ANON_3 = Backbone.RelationalModel.extend ({
urlRoot: ’/CTD_ANON_3°’,
defaults: {

"base":
null,
"id":
null,
"refinable":
true,
"name":
null,
"description":
null,
"information":
null
},
relations: [
{
type: Backbone.HasMany,
key: "requirement",
relatedModel: "CTD_ANON",
includeInJSON: true
},
{
type: Backbone.HasMany,
key: "requirement_group",
relatedModel: "CTD_ANON_3",
includeInJSON: true
}
]
)

Listing 6.2: Backbone.RelationalModel definition for requirement groups

39

ot =~ W N =

(@)

© 00

10

12

13
14

15
16
17
18
19

20
21

22
23

40

<div id="CTD_ANON_3_${id}">
name :
{{if $data.name!=null}}

{{tmpl (null, {templates: $item.templates, value:
$data.name, name: "name", fixed: falsel}) $item.
templates [’XSD__string’]}}

{{else}}

{{tmpl (null, {templates: $item.templates, value:
null , name: "name"}) $item.templates[’XSD__string
133

{{/if}}
S e
<div>

requirement:

{{if $data.requirement!=null && $data.requirement.
length>03}}

{{tmpl(requirement, {templates: $item.templates})
$item.templates [?CTD_ANON >]}}

{{/if}}

<button type="button" class="add_requirement">add
requirement </button>

</div>
<div>

requirement_group:

{{if $data.requirement_group!=null && $data.
requirement_group.length>0}}

{{tmpl(requirement_group, {templates: $item.
templates}) $item.templates[’>CTD_ANON_3°]}}

{{/if}}

<button type="button" class="add_requirement_group">
add requirement_group</button>

</div>
</div>

Listing 6.3: jQuery template for requirement group

© 00 J O Ot

10

12
13
14

15
16
17
18
19

20
21
22
23
24
25
26
27
28

29
30
31

class CTD_ANON_3_Controller extends Spine.Controller
events:

"click div > button.add_requirement": "
create_requirement"

"click div > button.add_requirement_group": "
create_requirement_group"

"change input": "save_changes"

"change select": "save_changes"

save_changes: (event) =>
try
event .stopPropagation ()
catch e
#

@item.set ({base: $(@el).children("*[name=’base’]").
val(), id: $(@el).children("*[name=’id’]1") .val(),
refinable: Boolean($(@el).children("input [name="
refinable’]") .is(’:checked’)), name: $(Qel).
children ("*[name=’name’]") .val(), description: $(
@el) .children("*[name=’description’]") .val(),
information: $(@el).children("*[name=’information
>IT").val() 3}, { silent: true 1})

@item.change ()

render: =>
@replace ($.tmpl (templates[’CTD_ANON_3’], Qitem.
toJSON(), {templates: templates}))
C]

remove: =>
@el.remove ()

constructor: (options) ->
super

@item.bind(’add:requirement update:requirement
remove:requirement add:requirement_group update:
requirement_group remove:requirement_group’,
@save_changes)

@item.bind (’destroy’, Qremove)

@item.bind(’add:requirement’, @add_requirement)

@item.bind(’add:requirement_group’,
@add_requirement_group)

41

32
33
34

35

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50

o1

42

add_requirement: (requirement) =>

requirement_ = new CTD_ANON_Controller (item:
requirement, el: $(’#requirement_’ + requirement.
id))

@el.children(’div:has(button.add_requirement) ’).
append (requirement_.render () .el)

create_requirement: (event) =>
event .stopPropagation ()
tmp=new CTD_ANON ()
@item.get (’requirement ’) .add (tmp, {silent: truel)
@item.trigger (’add:requirement’, tmp)

add_requirement_group: (requirement_group) =>

requirement_group_ = new CTD_ANON_3_Controller (item:

requirement_group, el: $(’#requirement_group_’
requirement_group.id))

Q@el.children(’div:has(button.add_requirement_group)
’) .append (requirement_group_.render () .el)

I
\

create_requirement_group: (event)
event .stopPropagation ()
tmp=new CTD_ANON_3()
Qitem.get (’requirement_group’).add(tmp, {silent:
truel})
Qitem.trigger (’add:requirement_group’, tmp)

+

Listing 6.4: Spine.Controller for requirement groups in CoffeeScript

© 00 O T i W N

— = e
w N = O

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

_nsgroup.CTD_ANON_4 = new Jsonix.Model.ClassInfo(
{

name: ’_nsgroup.CTD_ANON_4°
+
)
[...]
{
{
_nsgroup.CTD_ANON_4.properties = [
new Jsonix.Model.ElementPropertyInfo ({
name: ’requirement’,
collection: true,
elementName: new Jsonix.XML.QName (’http:\/\/www.
example.org\/PrIML_Subset’, ’requirement’),
typelnfo: _nsgroup.CTD_ANON,
b,
new Jsonix.Model.ElementPropertyInfo ({
name: ’information’,
elementName: new Jsonix.XML.QName (’http:\/\/www.
example.org\/PrIML_Subset’, ’information’),
typelnfo: Jsonix.Schema.XSD.String.INSTANCE,
b,
new Jsonix.Model.AttributePropertyInfo ({
name: ’refinable’,
typeInfo: Jsonix.Schema.XSD.Boolean.INSTANCE,
attributeName: new Jsonix.XML.QName (’refinable’)
b,
[...]
13
3,
[...]
}
_nsgroup.Mappings.elementInfos = [
{
elementName: new Jsonix.XML.QName (’http:\/\/www.
example.org\/PrIML_Subset’, ’requirement_group’),
typeInfo: _nsgroup.CTD_ANON_4,
3,
[...]
]

Listing 6.5: Jsonix mapping for requirement groups (extract)

43

6.3 Plugin Using Eclipse Modeling Framework

6.3.1 Overview

Using Eclipse and its modelling framework components such as EMF, EEF and oth-
ers has the advantage of providing a very high-level infrastructure that can be built
upon. Being itself a combination of plugins, Eclipse offers its functionalities such as
window management with perspectives and views, file operations, undo stack handling
and deep Java integration. From ISCUFE’s institutional point of view, Eclipse is the es-
sential software development tool. Integrating the PriML Ul into Eclipse is an obvious
consideration since it exploits an already set-up infrastructure and avoids adding more
software tools to the workflow chain.

The EMF project provides a framework for generating Eclipse plugins that are exe-
cutable using the Eclipse workbench. Such plugins can be generated based on different
sorts of model definitions. XML Schema is one of the possible input formats, which
makes it highly relevant to this thesis’ goal. There exists a wizard that accomplishes
all basic generation tasks from XSD input to the executable Eclipse plugin (cf. figure
6.3).

Without the necessity for manual adjustment there is a fully functional editor based
on a tree view representing the instance’s hierarchy. This tree provides all common
operations such as adding children elements, copying, pasting, moving and deleting.
It reflects the underlying XML structure quite directly. Syntactical characteristics as
XML’s distinction between elements and attributes are abstracted out — all these prop-
erties are considered to be EAttributes as EMF and Ecore call them. These are mapped
appropriately to the desired serialization form (XML element or attribute) by applying
the XSD2Ecore mapping directives generated along with the Java classes.

The edition of the attribute and element values happens in the respective property
views. These are table views reflecting the key-value structure of objects.

Strings and derived types thereof are represented by text input fields with potential
pattern constraints applied, enumeration types are transformed into drop-down select
boxes by default.

In the background, this Eclipse plugin consists of several Java class hierarchy levels.
Classes for all Ecore EClasses (which are in turn created for each complex XSD input
type) are generated. These are bundled in packages, one for each namespace contained
in the XML Schema definition. EMF.Edit adds ItemProvider classes for each complex
type which supplies the editor with the instance data. This is for example exploited
when creating the tree view. The respective getText () method on ItemProviders is
responsible for providing a human-readable label displayed in the tree (and later in the
EEF-generated input forms). EMF.Editor adds all classes providing UI functionality
including for example event handlers for tree view and property views.

Building upon this EMF plugin there can be enhanced property views provided by
the EEF project, which is also part of the Eclipse modelling context. EEF has the goal
of enabling the developer to generate more comfortable editing components than the
default Eclipse table-based views. Composition of forms and thus aggregating otherwise
split-up form fragments lies in EEF’s focus. EEF complements EMF with two further
models: the EEF .components model describing the views and model bindings and

44

Figure 6.3: Generation steps EMF

45

& Resource - Example_project/Example subset - Eclipse Platform SRR X

File Edit Navigate Search Project Sample Run SubsetEditor Window Help
i LA~ & ESS VN e 5 ([Resource |
(7 Project Explo 52 = O] @ Exemple.subset &2 [Exemple.subset 52 =
=& | = || By Resource Set <2l version="1.8" encoding="UTF-8"2>
: <subset:requirement_group xmlns:subset="http://uwww.ex
1= Example_project [} platform:/resource/Example_project/Example.subset <subset:requirements>
i Example.subset 4 Document Root <subset:requirement_group id="Sw_Req_Group_123" nam
<4 Requirement Group Type <subset:descriptions>This requirement group holds
4 Requirement Type <subset:requirement/>
</subset:requirement group:
4 Requirement Group Type :
N </subset:requirement_group>
4 Requirement Type
Selection | Parent | List| Tree| Table | Tree with Columns < i, »
1 Properties &2 EEE = =08
Property Value
Base =
Description := This requirement group holds ...
Id '= Sw_Req_Group_123
Information =
Name =
Refinable & true
‘ 1 b
me

Figure 6.4: Generated PrIML EMF Editor showing tree, XML and property view

the .eefgen model which takes a similar role as the .genmodel in EMF. These models
can be edited as plain XML files or with the EEF-specific model editor that arranges
the components in a tree view.!” The generation is accomplished by Acceleo [Ecll12a]
templates. Developers can apply extensions in order to complement the generated
classes and thus customize the resulting views. See screen shots of the basic EMF
editor (figure 6.4) and the enhanced EEF editor (figure 6.5). The property views are
depicted in the respective lower halves of the figures.

6.3.2 Generation Processes and Development Steps

The wizard for generating EMF.Edit and EMF.Editor plugin components out of XML
Schema collections does not take many parameters except the file name(s) of the input
XSDs. Influencing the output of the generation can be accomplished by complementing
the underlying XML Schema definitions with hints. For all transformation cases there
exist default values and behaviors but these do not always deliver the desired output.

First generations were applied to the complete PrIML XSD collection without any
Ecore hints or manipulations. The produced EMF plugins were fully functional and
provided a combination of tree view and property view. The functionality directly
visible did not exceed the functionality of Eclipse’s native XML perspective much.
Property views as EMF uses them by default are highly formalized, the tree view

" This editor seems to be not working under Linux, but no such bug report could be found.

46

= Resource - Example_preject/Example subset - Edlipse Platform ol

File Edit MNavigate Search Project Sample Run SubsetEditor Window Help
. QU PO EEB A B E G = (Res)

[Project Explo 52 = O & Examplesubset 2 [Examplesubset &2 =0

= G| & || R Resource Set <2xml version="1.8" encoding="UTF-8"2> P
- <subset:requirement_group xmlns:subset="http://wew.ex
1= Bxample_project 4! platform:/resource/Example_project/Example.subset <subset:requirement/>
<4 Document Root <subset:requirement_group id="Sw_Req_Group_123" nam
4 Requirement Group Type <subset:descriptionsThis requirement group holds
<subset:requirement/>
</subset:requirement_group>
</subset:requirement_group>

4 Requirement Type
4 Requirement Group Type
4 Requirement Type

Selection | Parent | List | Tree| Table| Tree with Columns < . r

= Properties i% =~ =0
Base Description: This requirement group holds ... i
Information :
Base:
1d: Sw_Req_Group_123
Name :
— EEEE
4 Requirement Type
RequirementGroup (4]

B

Figure 6.5: Generated PrIML. EEF Editor showing tree, XML and property view

reflects the XML tree hierarchy.

In the next step, EEF’s generation processes were applied to EMF’s output. See
figure 6.6 for an overview of the steps taken and for detailed textual descriptions of all
these generation steps cf. appendix A.2. As with the basic EMF generations, the EEF
processes were tried unparametrized. The result after applying the steps described in
EEF’s user guide [Ecl12b] was a partially working, enhanced version of the EMF.Editor
plugin. The property views did not consistently behave as expected, for some elements
the properties were not represented by form widgets. In these cases there was one text
input field and eventual child elements were expanded in textual form into this input.
Any property views for elements further down the hierarchy could not be displayed,
instead the Eclipse default error message “Properties not available.” was displayed.

In order to resolve this behavior the approach was to isolate a distinct subset of the
PrIML vocabulary. The subset was chosen with respect to having one or more seem-
ingly misbehaving element structures. Reducing the amount of involved elements im-
proved generation performance during the often repeated steps and the maintainability
in general. Based on the requirement_group element which bundles the descriptions
and relations of associated system or software requirements the subset was formed.
All referenced types and elements were collected and persisted into one separate XML
Schema file. Two simplifications were applied for this test subset: the occurrences of the
mixed type format:formattedText!® were replaced by xsd:string and the xml:base

8This type allows for combinations of text content and markup elements.

47

48

Figure 6.6: Generation steps EEF

attribute was omitted.

Analyzing this smaller subset of seven global element declarations, nine complex
type definitions (including types extending/ restricting each other) and two simple
type definitions led to the insight that repeatable XML Schema model groups (i.e.,
xsd:sequences and xsd:choices) were correctly handled by EMF, but EEF seemed
to incorrectly transform these into widgets. EMF uses a mechanism called FeatureMap
for such model groups with a maxOccurs attribute value greater than 1. This causes
the element containing the respective repeatable model group to get an extra group
property in the Ecore model representation. EEF’s generation step interprets this as
a property to be converted into a widget and does not take the components within
the group (i.e., element declarations) into account. Adding hints in the input XSD file
prevents EMF from creating FeatureMaps for repeatable XSD model groups in the first
place and thus provided proper input for EEF’s generation.

Based on this the EEF generation was applied again and the result was discussed
with ISCUE’s management and staff responsible for PrIML. In addition to the general
requirements for a PrIML Ul the following aspects were brought into focus specifically
for the Eclipse case:

e behavior of manually applied code changes when re-generations are applied,

e behavior and possible functional limitations of property views and tree views in
Eclipse’s workbench,

e introduction of a Rich Text editor for mixed types

(especially format:formattedText),

changing the textual labels of elements in tree and table view,

representing sub-tables with more than one column for detailed view,

possibilities to enable widget’s resizability (not enabled by default),

directly creating mandatory sub-elements,

methods for integrating more than one XML element level on one form and hence

deliberate limitations of the tree view depth,

e possibilities of reflecting file management (i.e., modularization) in the UL

The ideas behind these aspects and their possibilities of implementation are described
below.

6.3.3 Customization Steps

After completing EEF’s generation and the gathering of exemplary adjustment neces-
sities (see list above) the processes of implementing and possible problems encountered
during these attempts are described in this chapter.

Code protection when re-generating The fact that EMF uses protected source code
zones marked by JavaDoc @generated NOT tags, leads to the issue of the behavior of the
generation processes when encountering methods, that have to be overwritten, but are
marked as protected. A case where this comes into focus, is, when the order of widgets
on a form is adjusted by changing the order of addStep method invocations. Changing
the underlying model (be it the XSD or the Ecore model) leads to a mandatory re-
generation of the *EditionPartForm Java classes in order to appropriately reflect all

49

of the model’s attributes. The generation then overwrites the protected method but
creates a file with the same local name and the file extension .lost in the same source
folder. It contains all source code fragments that were marked in order to be protected
but overwritten anyway. Restoring otherwise lost content is thus possible. For a simple
order changing use case it is worth considering whether protecting the method is useful
at all, because in any case a re-ordering after a new generation run becomes necessary.

Property view behavior and possible pin-on commands Eclipse treats the property
view as one view that can either be visible, minimized or invisible. Similarly behaving
views are the Outline, Error Log and other generic views used in many contexts. By
default, there can be one of each of these views in the Eclipse workbench. Since EEF
expands the usual key-value character of property views to fully-featured forms, this
one-at-a-time constraint limits the user. Monitoring the details of two entities at the
same time is not directly possible. It is however possible to pin-on a property view, i.e.,
fixing its content, regardless of the possibly changing tree view selection. This feature
is not fully functional in EEF, since not all event handlers, especially for handling
attribute changes or updates, are reflected appropriately. This bug is reported but
could not be resolved by the time of this thesis.

Rich text editor The documentation and change log of EEF states, that it is possi-
ble from version 0.9.0 onwards, to use a rich text editor plugin from another Eclipse
project, the Eclipse Process Framework (EPF). However, none of the EEF-related doc-
umentation pages and tutorials provided any information on how to replace a usual text
input widget by this sort of rich text widget. The EEF components model editor that
is enabling the user to change widget representations for object types and attributes,
does not offer the rich text widget in question. Programmatically plugging it into an
EEF property view form proved to be not working.

Textual labels for elements The default textual label for an element is a concatenation
of the element’s type name and one of its attribute values if present. This does provide
a starting point but is in most cases dissatisfactory. It can be changed by overriding
the getText () method for the element’s type in its [temProvider class. Checks for null
values are important in order to prevent NullPointerExceptions to occur at run time.
See the screen casts for an example demonstration of such a text label customization.

ReferencesTable enhancements Tables for multi-valued containment EAttributes are
by default represented as AdvancedTableCompositions in EEF. They are populated by
ContentProviders with a textual label consisting of a string. The respective labels can
be customized according to the pieces information that shall be representing an item in
the tree view and in potential table views on EEF forms (see paragraph before). This
is helpful for similarly structured sorts of items but gets uncomfortable in cases where
the label strings become inconsistent in terms of length and thus comparability. So the
decision was to define more than one column on table views.

The example for which this was tested was the requirement group form. In a first step
it was possible to add an instance of org.eclipse.swt.widgets.Table to the form

50

Requirement :

< Requirement Type Req_0001

Figure 6.7: EEF widget AdvancedTableComposition for requirements as children of re-
quirement groups

D Description Latest change
Req_0001 An example requirement created Add

Figure 6.8: EEF widget TableComposition for requirements as children of requirement
groups

and set three columns with appropriate headers. This table was complemented by a
button which got a MouseUp event handler iterating over the table items in the original
requirement table. For each table item the getData() method provided the underlying
item data which could then be used for the population of the manually added table.
Displaying the ID, description and history entries in one table row was thus possible.
But cloning the table in such a manner is not feasible for a functional UI, so other widget
representations were attempted. Contrary to the nomenclature, the TableComposition
widget offered in fact more advanced entry points for programmatically adding columns
and populating them with further data attributes of the underlying instance object.

So, changing the widget representation for requirements on requirement group forms
in the EEF .components model to TableComposition and invoking a regeneration was
approached. See a comparison of the widgets AdvancedTableComposition (figure 6.7)
and TableComposition (figure 6.8). Both represent the same underlying requirement
(i.e., with the same attribute-value set) that is a child of a requirement group.

See the screen casts for a demonstration video of changing an AdvancedTableCom-
position to a TableComposition.

Widget sizes The layout of widgets on EEF-generated forms and the layout of the
latter as a whole can be influenced on source code level. In EEF’s src-gen folder
reside [type name/PropertiesEditionPartForm.java files for each respective type. Every
attribute and sub-element of such a type has methods in such a class for creation,
initialization, etc. The sort of widget that is demanded to be resized in order to better
exploit the existing screen space is the EEF Advanced TableComposition. It is used
for presenting a list of equally-typed sub-elements on the parent’s form view. In the

51

PriML subset starting from the requirement group level this is used for e.g. the list of
requirements as the children of a requirement group. Since this table shows only five
items by default and offers a scroll bar for more than five items, this is taken as the
precedence case for changing a widget’s size. (The same necessity applies to the sibling
table view presenting sub-requirement groups.)

In the createRequirementTableComposition method exists the default layout con-
figuration for tables of this kind. The constant GridData.FILL _HORIZONTAL is set as
the basic layout information and the horizontalSpan property is set to value 3. It is
worth noting that this layout configuration applies to the grid that holds the table, not
the table itself. Changing layout parameters is possible by addressing the getTable
method on the ReferencesTable object and invoking setLayoutData with the respective
FormData instance as the argument. See listing 6.6 for the example code.

1||protected Composite createRequirementTableComposition (
FormToolkit widgetFactory, Composite parent) {

2

3 //

4

) GridData requirementData = new GridData(GridData.
FILL_HORIZONTAL);

6 requirementData.horizontalSpan = 3;

7

8 // start of manually added layout code

9 FormData requirementTablelLayout = new FormData();

10 requirementTablelLayout.height = 700;

11 requirementTablelayout.width = 700;

12 this.requirement.getTable () .setLayoutData (

requirementTablelLayout) ;
13 // end of manually added layout code

14

15 this.requirement.setlLayoutData(requirementData) ;
16

17 /7

1811}

Listing 6.6: Layout configuration for EEF references table

Explicitly setting height and width properties on the table has the desired effect but
brings the side effect of hiding the button group for adding, moving and deleting items
from the table. Note also that this size changing method applies to AdvancedTable-
Composition widgets; achieving a similar effect on TableComposition widgets seemed
not directly possible.

Automatic sub-element expansion When creating new elements in the EMF (or EEF)

editor, there exists no automatic creation of mandatory sub-elements. This allows for
instance data that does not conform to the underlying schema to be saved. It is impos-

92

sible to introduce mechanisms that provide valid structures in every case. Consider a
mandatory xsd:choice group with several child elements of which more than one has
aminOccurs >0. The only way of ensuring an always-valid sub-element creation would
be to randomly choose one of those elements, of which one has to occur. This can easily
lead to confusion if the user does not know about the random character of the expansion
or to rejection if the behavior is comprehensible but provides often not-needed results.
It is however possible and useful to automatically expand mandatory sub-elements in
unambiguous cases. An example is the direct creation of a history element when creat-
ing a new requirement. This history element can get default values as the current date,
version number 1 and the changed value of “created”. See listing 6.7 for the source
code of this example.

Integration and pulling up element information The list of elements that shall be dis-
played as children of an element in question contains all child elements of complex type
by default. Changing this assertion is possible in the getChildrenFeatures() method
of the respective [type name/ItemProvider class. Eventually this method is invoked for
the super-type and specific children features for the type are added. Manipulating these
assertions causes a limited children display (when features are removed) or an enhanced
display when others are added. Ideally, the right-click context menu offering to create
New Children is held consistent to that: the method collectNewChildDescriptors ()
is responsible for assertions about possible elements that can be created as new chil-
dren of the respective element. Such changes can and should be asserted on the .gen-
model level in order to have the (re-)generation process handle all necessary source
code changes correctly. The attributes Children (influencing whether the elements in
question shall be displayed as children nodes in the tree) and Create child (influencing
whether the “New child” context menu shall offer an item for the element in question)
are the relevant configuration flags for this case. In one of the screen cast videos there is
a demonstration for limiting the tree display for elements that are already represented
via table views.

Whenever there are cases where more than one XML element level has to be skipped
from the tree, this indermediate level has to be taken care of when customizing the
tree. This can either be accomplished by manually overriding methods in the Java
classes for the respective elements or in case a schema change is acceptable, this might
ease the efforts. One example from the PrIML XSDs is the element references on
a requirement. There has to exist exactly one such element on every requirement and
it can contain the elements realize, refine, copy and link to. These in turn can
each contain arbitrarily many sub-elements. Integrating this kind of two-level element
hierarchy cannot be handled by model adjustments, EMF does not offer a feature for
hiding wrapper elements'® in the UI and only applying the wrapping for serialization.
FElaborate XSD changes would have to be undertaken in order to form a structure that
a) reflects the domain reality of refinements, realizations, etc. appropriately and b) is
automatically transformed into comfortable Ul representations by EEF.

An attempt to integrate the references of requirements directly on the require-

!9This is a common practice in XML structures for aggregating elements of the same kind in a (often
pluralized) form of wrapper element.

93

ment’s form has been made. Not all constraints that the original XSD constructs make
have been realized in the reorganization but it however forms an example how to rebuild
schema parts in order to influence EEF’s form generation. In this changed schema (its
XSD and the generated editor plugin is contained on the thesis CD-ROM for more de-
tailed insights) the sub-element references is replaced by an xsd:choice that has to
occur exactly once and the elements within the xsd:choice aremodification _request,
requirement, open_point, etc. These have the same sub-element and attribute struc-
ture as before, only that the kind of reference (refine, realize, copy or link to) is
now reflected in a refType attribute. That does not allow for constraining the some-
times applicable state attribute depending on the reference type. This attribute hence
is settable in all cases now, only its use is not “required” anymore. This is the basic
validation loss that comes with this schema change, among the necessity to change the
XSLT scripts that expect the structure to be like the original schema states it. Generat-
ing an EEF editor based on this schema it is possible to see and edit all references that
the requirement in question makes on the requirement’s form itself. Conforming to the
multi-column table customization description above an even more informative view can
be achieved where the type of reference is directly visible etc. It has to be emphasized
that this attempt is only one possible way of introducing a schema change. Another
way would be to take the kind of reference as the entry point under each requirement
and assert the references target type in an attribute.

File management Being able to separate instance data on more than one file is one
of the key PrIML advantages and necessities. Efficient versioning, collaboration and
the logical modularization of data components are the rationale for such separation.
Integrating resource-specific aspects into the UI such as file names and the tree view
population over more than one file is thus a key aspects to be evaluated.

EMF offers the possibility to edit more than one file in the same EMF editor. Load-
ing new resources into the editor can be done by right-clicking in the tree view and
selecting Load Resource from the context menu. Every resource is represented by a
node under the (virtual) document root node in the displayed tree. This does not yet
reflect the XInclude mechanisms used in PrIML but such functionality might be added
programmatically.

o4

O Tl W N~

o 3

10
11
12
13
14
15
16
17

18
19
20

21

22
23

24
25
26
27
28
29
30

// method getHistory() in class PrimlElementBasetypeImpl
public EList getHistory () A
// in case the history property is not already set
if (history == null) {
// ... one %s created
history = new EObjectContainmentEList (HistoryType.
class, this, SubsetPackage.
PRIML_ELEMENT_BASETYPE__HISTORY) ;

// a new HistoryType is being instantiated,
HistoryTypeImpl default_history = new
HistoryTypeImpl () ;

// its wersion property is set to wvalue 1
default_history.setVersion(1);

// its changed wvalue %is set to "created"
default_history.setChange("created");

// a mew Calendar tinstance provides the current date
and time information
Calendar date = Calendar.getInstance();

// the date is set conforming to the format YYYY-MM-
DD; leading zeros are eventually added for month
and day

default_history.setDate(date.get(Calendar.YEAR) + "-
" + (date.get(Calendar.MONTH) < 10 7 "O" : "") +
date.get (Calendar .MONTH) + "-" + (date.get(
Calendar .DAY_OF_MONTH) < 10 7 "O" : "") + date.get
(Calendar .DAY_OF_MONTH)) ;

// for editor the default value is set to the empty
string
default_history.setEditor("");

// the entry is added to the history reference list
history.add(default_history);
}

return history;

Listing 6.7: Manually added source code for history expansion on requirement addition

95

6.4 Comparison

After describing and explaining both solutions in the two chapters above, a comparison
is drawn. This is done using the aspects and requirements listed in chaper 6.1 and
in a more general manner afterwards. For both protoypes the extent, to which the
respective requirement is implemented, is described. This comparison is based on the
state that the prototypes have in the end of the thesis period.

6.4.1 Requirement-Based Evaluations

See table 6.2 for a tabular comparison complementing the textual comparion in this
chapter.

“The Ul is able to run on Windows, Linux and MacOS X” Both approaches follow
a platform-independent paradigm. Web applications are dependent on the existence of
a (modern®®) web browser. All three operating systems Windows, Linux and MacOS X
support such modern web browsers, thus the web application is able to run on all of these
platforms. Differences between the browsers can occur, since every vendor implements
features slightly different but the functionality for the application developed in this
thesis shall be given.

Eclipse is a Java-based platform and hence can be run on any platform supporting
a Java Virtual Machine (VM). All three operating systems offer Java support, so the
requirement is met by Eclipse and thus by EMF and EEF as well.

Both solutions meet the requirement of being able to run on the three main operating
systems for desktop devices. Since web applications can in most cases also be used on
mobile devices, this can be considered an extra benefit that was not explicitly demanded.
The perpetual evolution of web technology and the lack of reliable cross-browser feature
support is a disadvantage in terms of web application use. Eclipse as an open-source
IDE and its projects being under continuous developments as well is also not completely
reliable and does not in all cases offer backwards compatibility.

So both approaches provide a platform-independent basis.

“The Ul is generated as completely as possible; manual customizations can be
applied to fit needs more exactly” The extent to which a Ul and its processes can
be automatically generated is one aspect of this requirement; the other one is the
extensibility.

The web application is (apart from the removal of comments in order to enable the
functionality) designed for a complete generation. Manual extensions can be applied
but do not have to.

A similar case is EMF: the generation processes provide a fully-functional editor plu-
gin that does not need any manual input. EEF is slightly more demanding when it

20The term of a modern web browser is not clearly definable. All current versions of the three main
browsers Mozilla Firefox, Google Chrome and Internet Explorer to some extent can be considered
to be “modern”. Internet Explorer versions <= 7 are commonly perceived as critical browsers in
terms of feature support.

o6

comes to manual steps complementing its generations. Copy-pasting generated frag-
ments in the respective destination folders and files and overriding specific Java methods
belongs to these necessary manual steps.?!

When it comes to extensibility, the web application can be further developed with
functions such as drag&drop and introducing domain knowledge for cases like ID refer-
ences of certain element types only. The amount of files, lines of code and abstraction
layers is comprehensible. Both the generation methods and the resulting classes and
files can be modified quite directly. EMF and EEF build on a far more verbose ar-
chitecture than the web application. This leads to a high entry threshold but supplies
the user with a highly modularized infrastructure, once he understands the components
interacting with each other.

Summing up, both prototypes have a high generation potential, EEF lessens it slightly
for the Eclipse approach. The learn-curve is steep for the EMF/EEF frameworks,
their advantages lie in the long-run when such a stable architecture allows for reliable
components to apply extensions to. The light-weight web solution allows for a better
maintainability in the beginning but demands for a more extensive amount of hand-
coding features when they become necessary.

“Schema changes are reflected in the Ul after a regeneration” This requirement
is mostly relevant for the distinction between generation time and run time. In both
approaches schema changes are not reflected at run time but require a regeneration.

Invoking such a regeneration for the web application is accomplished by executing
the command-line Python script again. EMF has different schema layers that can
change. The input XSD(s) can change, the Ecore model derived from the XSD(s),
the .genmodel, the .xsd2ecore and EEF’s two model files. EMF and EEF allow for
partial (re-)generation, i.e., regenerating only the parts that require updates. This
is comfortable when changes and their consequences are completely comprehensible
but often even small schema changes have consequences in several classes not directly
visible from a developer’s point of view. Making general decisions on how to introduce
schema and model changes and how to make them explicit for (later) comprehensibility
can be helpful in order to consistently preserve manual changes. Including generated
source code into versioning systems is usually not recommended but when generated
and manually written source code intermix, it might become useful.

“Manual customizations are protected from being overwritten by a regeneration”
In the Python generation processes producing the web application no such feature
as protected zones or merging of source code files is available, so manually applied
changes are by default overwritten if not saved in other folders or files. EMF and EEF
use protected source code zones and thus manual changes can be preserved from being
overwritten by new generations. This requirement is thus better met by EMF/EEF
than by the self-developed Python methods.

Z1These steps are automatable but EEF does not itself provide mechanisms to do so. Ant build scripts
for supporting EEF’s generations are discussed but not available during the time of research.

o7

Requirement Web EMF and
Application | EEF

The Ul is able to run on Windows, Linux and MacOS | yes yes

X

The Ul is generated as completely as possible; man- | yes yes

ual customizations can be applied to fit needs more

exactly

Schema changes are reflected in the Ul after a regen- | yes yes

eration

Manual customizations are protected from being | no yes

overwritten by a regeneration

The user does not need to enter XML markup yes yes

The user can combine XML data entry and Ul-based | no yes

data entry

The UI suggests components and/or values where | partly partly

applicable

The UI allows user to deep-copy (and manually ad- | no yes

just) existing components

The UI provides undo and redo functionality no yes

Approaches of direct manipulation (e.g., drag&drop) | no yes

are enabled where applicable

Element values of mixed content type (especially | no no

format:formattedText and its sub-types) can be

entered with an appropriate rich text editor widget

PriML’s XSLT processes can be invoked from the UI | no yes
yes: 4 yes: 10
no: 7 no: 1
partly: 1 partly: 1

Table 6.2: Comparison of requirements

“The user does not need to enter XML markup” Developing a GUI based on an
XML Schema vocabulary has in PrIML’s case the main reason of introducing more
comfortable interaction methods than entering XML markup directly. Abstracting
from the serialization that characterizes XML the UI is perceived as the intermediate
interaction layer between user and data. In both solutions the user does not need
to enter XML markup in order to edit the XML instances in question. Hence, both
solutions do not demand XML knowledge on end user side.

“The user can combine XML data entry and Ul-based data entry” Releasing users
from entering XML markup is in most cases a comfortable and desired aspect, but some
users might want to combine XML markup entry with Ul support aspects. This makes
two views on the same data necessary: one Ul view and one XML or plain text view.
These have to be updated whenever data changes occur and kept in sync with each

o8

other. Eclipse has its concepts of perspectives containing several views. This allows for
exactly this kind of manifold editing as just described. Opening an XML instance file
with the generated editor and simultaneously viewing it with an XML view is possible.
The Eclipse platform listens to change events and notifies all listeners of data changes
in order to give these listeners the chance to update accordingly. The web application
puts out the XML serialization form of the current elements into a textarea element.
This is not automatically updated and changing the content of it does not lead to a
respective data update. Enabling it would directly be coupled to the ability to load
existing instance data into the Ul and re-rendering the views. Since this is not possible
in the state of the prototype, the combination of Ul data entry and markup edition is
only possible in the EMF plugin solution.

“The Ul suggests components and/or values where applicable” Value suggestions
and widgets that only allow for the entry of valid values fall into this category of user
support. Both EMF and the web application provide such aspects via the choice of
drop-down menus when encountering enumeration simple types. Choosing one of the
suggested values ensures valid data entry. Automatically setting eventual default or
fixed values is another such aspect that is implemented in both solutions. The di-
rect expansion of required attributes and sub-elements is a feature that is only partly
implemented in both solutions. The web application takes minOccurs values into ac-
count when rendering sub-elements of elements and pre-fills inputs with default and/or
fixed values. EMF does directly fill in default and fixed values but does not pre-render
required sub-elements.

Summing up, both approaches implement some potential features, but none of them
offers completely satisfactory mechanisms that exhaust the suggestion potential.

“The Ul allows user to deep-copy [...] existing components” When it comes to
repetitive data entry where only details in different sub-elements differ, possibilities to
easily copy and adjust existing elements can be helpful. Eclipe’s tree view natively
supports copying of either single tree nodes or whole tree branches. EMF triggers copy
actions when such copying (and deletions analogously) is observed. The web solution
does not support direct cloning of elements.

“The Ul provides undo and redo functionality” Providing an undo stack that tracks
the last changes applied to the data is a common practice in many kinds of applica-
tions. Eclipse as an IDE framework offers undo and redo functionalities by default and
plugins in the framework such as the generated editors benefit from them. Browser
applications do not build upon such an infrastructure and have to introduce interaction
stacks themselves if demanded. The web prototype in this thesis does not contain an
undo stack since it would require complete loading, creating, updating and deleting
mechanisms. These are not part of the prototype’s state and thus an undo mechanism
is not implemented.

“Approaches of direct manipulation [...] are enabled where applicable” In terms
of direct manipulation aspects such as drag&drop the situation is similar to the undo

99

features described above. Applications that exploit an existing infrastructure like the
Eclipse framework that provide many low-level functions do not need to take care of
these functions’ implementation. This holds true for dragging and dropping tree nodes
in Eclipse as well. Drag&drop is also common in browser applications for some time but
is subject to manual development rather than just using anyway existing mechanisms.
jQuery UI for example offers library constructs for drag&drop interaction patterns but
this has not been introduced into the web-based approach in this thesis.

“Element values of mixed content type [...] can be entered with an appropriate
rich-text editor widget” One of the powerful features in PrIML is the usage of mixed
complex types for most textual elements. The type format:formattedText and its
derived types allow for the intermixing of text content and sub-elements that mark up
the text. These elements contain constructs for emphasis, tables, links and other struc-
turing aspects. Reflecting such mixed-typed elements is by default handled straight-
forwardly by both EMF and the web application. The special character of marking up
is not reflected since it requires the domain knowledge that wrapping text content in
an emph element would ideally lead to typographically emphasizing it. Being able to
represent mixed-typed elements with a rich text editor widget was hence a formulated
requirement. The EEF documentation does mention a rich text editor widget that can
be included in an EEF property view but attempts to de facto using it in the gener-
ated plugin, failed. Neither asserting it in the EEF .components nor programmatically
adding it to a generated form view could be achieved. Rich text editor plugins exist
for web applications, some only usable for HTML markup, some customizable to fit
specific needs. This thesis protoype web application does not introduce such a widget.

None of the solutions can currently provide a comfortable rich text editor for mixed-
typed elements.

“PrIML’s XSLT processes can be invoked from the UI” The character of PriML
as a framework bundling XML Schema definitions and XSLT transformation scripts
makes a direct invocation of these scripts a useful feature of the Ul in question. Ant is
used for PrIML’s transformations complemented by directory clean-up etc. Since Ant
is available as an Eclipse view, the integration of the EMF/EEF editor and PrIML’s
XSLT scripts is directly possible. In web browsers, neither Ant support nor XSLT 2.0
are available and thus a seamless integration cannot be achieved.

Specific EMF/EEF customizations In addition to the general requirements and the
explanations on their implementation status in both prototypes, the specific customiza-
tion demands for EMF and EEF are briefly summed up. These have been described in
chapter 6.3.2.

Not all of the customizations that have been identified as useful or even required,
could be realized. The non-successful aspects are mostly caused by the verbose archi-
tecture of EMF and EEF and especially the lack of detailed EEF documentation and
basic literature. This led to extensive trial-and-error experimenting that did not in
all cases produce satisfactory results. The rich text editor plugin usage is such a case
where the desired solution could not be achieved. This can be perceived as a blocking

60

aspect because PrIML’s textual elements mainly build upon mixed types that represent
text content with potentially formating markup. The subset of PriML elements does
deliberately exclude this element facet and reduces text content to xsd:strings. For
a productive usage there has to either be a solution that implements a sort of rich text
editor or at least a widget type that supports the entry of markup tags.??

An aspect that was implementable is the change from AdvancedTableComposition
to TableComposition widgets in order to display a more detailed list of sub-elements
on forms. The features of a table are thus exploited in a more efficient way. It bundles
anyway existing information in a more structured way than just displaying a flat textual
label for each item. A demonstration that can be used as the basis for reorganizations in
EEF is the automatic sub-element creation as shown for history entries of requirements.
The issues related to element level integration and tree view clipping are more complex
and are ideally approached specifically. Schema changes seem to be an often appropriate
solution in order to avoid cumbersome multi-level Java source code changes.

Essential for enhancing EEF editors to really usable editors is the ability to detach
elements’ representation from their underlying XML structure. Concepts like wrapper
elements that are useful from an XML serialization point of view might be perceived
too verbose or even confusing when it comes to a tree and property view representation.

The general impression is, that a customization requires the programatic edition of
Java code — not all aspects are realizable via model assertions. Whenever such Java
changes are in question, the different source code packages have to be checked for
potential interdependencies. Overriding a method in one class led in some cases to
incomprehensible NullPointerExceptions at run time.

6.4.2 Overall Comparison

Throughout the complete prototyping phase there proved to be two main differences
between the approaches taken.

The first is, that whenever using an existing heavy-weight framework or framework
combination, the potentials of reusing many low-level infrastructure features grow. This
holds true for the complete Eclipse framework that EMF and EEF directly exploit and
provide further to the concrete editor plugins based on their processes. All aspects
mentioned above like file handling, window management, change notifications and undo
functionality are examples for infrastructural advantages of a system like Eclipse. How-
ever, EMF and EEF add their own generic classes for ItemProviders, editors, forms,
etc. These are matured constructs interacting with each other in well-defined ways and
ready to be used. The extent to which such architecture exists when using Eclipse, it
has to be designed and implemented nearly from scratch when attempting to prototype
a similar editor using browser and web standards. The differences between heavy-weight
and light-weight approaches drastically show when directly contrasted with each other
as practiced above.

The second difference realized, that is associated with the heavy-weight /light-weight
aspect, is the importance of an understanding of the processes that are used. [Hun00]

221t would be possible to replace a default text input by a StyledText widget and attach markup buttons
to it. These would wrap the text selection made with respective markup tags. Such an approach
would contradict the goal of not having to handle XML markup in the UL

61

states that source code wizards are able to produce large amounts of program code
in nearly no time. What is pointed out as well, is, that using such wizards is only
advisable when the developer understands their processes and especially their output
(cf. [HunOO], pp. 198f.). This applies to EMF and EEF as well. At least when it
comes to either misbehavior of the generated editor or the case that customizations are
demanded.

As a consequence, the expectation of having two prototypes that each demonstrates
different software generation aspects, has proved to be true.

Similar to both solutions is, that generating an editor with a model-based concept
by default leads to a tree-like view and form-based paradigm. There are mechanisms
of transforming XSD types into widgets that seem straight-forward and fit the nature
of the underlying types. Nevertheless, any such model-based approach focuses on the
model, not primarily on the user. It is essential for the complete development and design
process whether the premise is somewhat similar to “The model contains the canonical
structure to be used” or “The user shall be able to edit the information he is confronted
with”. Developing model-to-UI mechanisms nearly from scratch directly stresses the
fact that model-based methods always assume the role of inspecting what the existing
formal description provides rather than what is usable for the end user. Both solutions,
web application and EMF/EEF, share this kind of perspective. Following the input
XML structure is surely straight-forward but not in all cases the most intuitive way
possible. UIDLs attempt to take the user’s task perspective into account by expressing
potential tasks in a model. This is one step towards a more user-centered way of
developing but such task models have their fix structural constructs as well.

The tenor that is often formulated in terms of MBUID results and potentials is,
that most Ul components can be generated since the methods to express models and
the mechanisms to transform these into source code exist. But the argument against
MBUID approaches is, that they formalize essential aspects of interaction too drasti-
cally. This aspect can be corroborated from the practical solution perspective. The two
prototypes applied algorithmic structures to formal descriptions to generate a UL The
output does reflect the underlying entities and properties but the algorithmic paradigm
is quite obviously apparent. EMF is designed to form the basis for a further devel-
opment using its API and abstraction layers. When the result is not claimed to be a
directly usable (in sense of usability) interface, the potential of EMF as a starting point
for UI development is very high. EEF attempts to extend this even further but is still
based on formalizing mechanisms. Similar overall conclusions apply to the web appli-
cation approach. Its basic generation potential is high as well, but from the usability
point of view such a Ul will in most cases not be the end of the development efforts.

6.4.3 Recommendations for ISCUE

The goal of giving a specific framework recommendation to ISCUE, that was formulated
in the introduction, can be met by pointing out EMF’s advantages. It is a widely-
adopted approach and framework, at least the EMF part. EMF and EEF provide model-
to-model and model-to-code transformations that lead to a functional and powerful
editor plugin. The Java code generated out of the Ecore and other models does itself
introduce several levels of abstraction, manifested in providers, adapters, interfaces

62

and implemented classes. Attempts to customize auch a complex architecture requires
much more (Java) programming knowledge than expected. EMF as the much more
mature framework in the Eclipse Modeling context defines its role as a basis for manual
adjustments and customizations. EEF goes one step further by providing constructs
that allow for more elaborate form building. Since EEF is not as mature as EMF, the
documentation is in many cases not as reliable and verbose. Systematical introduction
literature does exist for EMF, for EEF the wiki and the Eclipse forums are often the
only information sources. The demonstrated customization examples in EEF are not all
ready for productional implementation. The understanding of a software generator’s
output is absolutely essential for evaluating, customizing and debugging. In order
to produce customized EMF/EEF editors that run stable, a solid knowledge of the
Java programming language, the Ecore meta-model and the general Eclipse plugin
development architecture is indispensable. The used EMF book [Ste09] provides a
solid basis for understanding EMF, EEF in turn demands for intensive trial-and-error
development due to its (still) lacking basic literature. However, Eclipse offers a lot of
basic functionality that can directly be re-used: file handling, window management,
undo and redo mechanisms and the deep Java integration. These are aspects that a
manually-developed prototype as the web application has to be equipped with, in order
to be really competitive. Table 6.2 shows the comparison; EMF/EEF can meet ten of
the requirements, the web application only four.

Using a web-based application as the one achieved in this thesis is not feasible for
meeting ISCUE’s requirements. Stability, reliable mechanisms for deploying and an
ideally seamless integration into the existing tool chain cannot be ensured with such
a web application. Features that Eclipse (and thus EMF/EEF) provides by default,
have to be considered explicitly in the browser context. File input and output are
hardly achievable on client-side only. Undo stacks and the flexible window management
infrastructure are prominent features that are crucial to data entry applications but have
to be added by hand.

Summing up, the recommendation for a PrIML user interface that is supported by
generative methods, is, to use the Eclipse frameworks EMF and EEF. The condition for
a successful usage is to accept a much higher amount of effort than originally expected.
An easily customizable GUI builder as for example Visual Studio, Qt and others provide
it, does not exist and demands programatically changing and extending Java source
code. The XSD model definitions provide enough information for generating a Ul, that
could be proven, but in order to be really usable and useful in comparison to just using
the Eclipse XML perspective, it needs time and in both EMF’s and EEF’s contexts
the willingness to accept high degrees of abstraction. In addition to that, manually
changing and extending generated source code demands the awareness that a change
in one class method may lead to errors in several others — even more drastically when
customizing self-developed or self-generated source code.

63

7 Conclusions and Lessons Learned

The working hypothesis that led to this thesis’ topic and goal was, that a model defini-
tion (in XML Schema) provides sufficient information for automatically generating a Ul
that enables users to CRUD data conforming to the model. Type definitions, relations
and constraints should be the basis for ideally a complete or nearly complete generation
of a Ul that releases the end user from entering XML markup.

Evaluating MBUID methods on a practical use case and to pragmatically generate
a Ul application was the goal this thesis has set up. Instead of only gathering models,
concepts and theories of MBUID approaches the PrIML vocabulary and the concrete
necessity of a Ul were the starting points of the considerations made.

First research led to the MBUID research field, that develops models, approaches
and tools for over 20 years. Its existence emphasized the significance of concepts such
as automating Ul development with models and software generators. Formalizing Ul
components, abstracting out recurring tasks and patterns were notions that frequently
occurred in literature and practical tool development reports. Goals and motivations
were in most cases at least indirectly bound to the idea of increasing efficiency and
deduplicating efforts. But when it comes to UIDLs and MBUID frameworks, an often-
neglected aspect is the concrete transformation methods for code generation. Rendering
the formal UI descriptions into functional user interfaces is usually left out and there are
hardly any out-of-the-box frameworks building on top of UIDL models. Literature and
reports on MBUID in general often come to the conclusion that the MBUID paradigm is
not broadly accepted and adapted due to its high degree of formalization. Since usability
and highly specific interfaces are not easily implementable by MBUID methods, manual
design and development is often preferred in the first place. This common sense in
MBUID criticism was used as the basis of the thesis’ analysis — whether the limits of
model-based Uls still hold true if a specific XML Schema is used as the demonstration
case.

The working hypothesis stated in the introduction chapter has been proven since
XML Schema definitions provide enough information for UI generation. The Eclipse
plugin that EMF and EEF in combination generate and the browser-based application
are examples for the ability of such UI generation out of XML Schema. The user does
not need to enter XML markup code to CRUD schema-conforming instances. Forms
with widgets are automatically generated and included as appropriate. Since design and
development of Uls is highly user-specific and even slightly different interaction element
choices can lead to drastic influences on usability, the customization possibilities are
an essential necessity. Usability is an ever-present layer when designing and developing
applications. The prototypes that have been developed in the thesis are examples
for Ul applications that do not focus on usability primarily. This became obvious
when the (intermediate) results in EMF/EEF were put up for discussion with ISCUE’s
management and staff. Two aspects characterized the assessment of the UI: the process

64

was claimed to be automated since the information necessary seemed to exist in the
XML Schema already but at the same time customization and change requests were
brought up. So the seemingly contrary demands for automation/formalization on the
one hand and customization/specialization on the other hand were appreciable in the
way the Ul was perceived. In order to cover both aspects in the Eclipse development
branch, the generations were used and some customization requests were implemented
exemplarily.

As a light-weight environment for application development the browser-based solution
demonstrates the potential of software components generation. Without introducing
model-to-model transformations and without heavy abstraction layers it stresses the
concept of generating source code in order to achieve consistency and still being able
to directly comprehend cause and effect of these generative methods. Creating an
architecture for the target application, developing the reference implementation for a
defined XSD subset and implementing the generator methods on this basis were the
steps taken in this approach. It directly demonstrates the needs for consistency over
all UI components (models, views, controllers, XML bindings) and the challenges of
MBUID paradigms such as appropriate widget choices. The desired effects of this sort
of generation were the necessity to really experience what it takes to set up generators
that interact with each other. Generating an application with self-developed processes
demands for a continuous reflection about all kinds of application components and
their communication and interdependencies. In some parts the development of the
web application appeared to be a reverse engineering of the EMF and EEF paradigms,
but whenever such perception arose, the awareness of software and UI generation even
grew. The fact that model-based approaches often go back to similar mechanisms was
demonstrated in such cases.

Methodically, the decision to compare two different prototypes instead of focusing on
a single one, has in some cases led to trade-offs concerning the depth of research and
implementation. Keeping the balance in terms of time and effort for both approaches
was an additional challenge, complementing the anyway complex process of under-
standing, applying and evaluating model-based development concepts. However, being
able to compare two ways of generating Uls out of XML Schema definitions (using a
framework on the one hand and manually developing generators on the other hand) did
provide benefits that made it worth the effort. The ability to reveal similarities in both
approaches and the differentiation when it comes to the abstraction stack increased
learning effects.

An essential lesson learned is, that generative methods can comfortably handle repet-
itive parts of development. Setting up scripts that automatically create class skeletons
and consistent template bodies is a development pattern that can anyway be adapted
— whether the development targets a 100% generation ratio or not. Generating UI
components is only one specific use case of a widely adapted paradigm of automating
development processes. But as stated above in some chapter contexts, formalizing the
methods of Ul development tends to result in similar-appealing sorts of interaction
paradigms. This is appropriate and suffices when the primary goal is to hide XML
markup from the end user, as it was in this thesis. But even then contra-intuitive wid-
get choices, screen layout and positioning aspects often lead to customization demands.
The subjectively perceived support that a Ul provides the end user with, cannot be left

65

out of the development considerations. The target audience has to be involved in the
design decisions made for the Ul and hence its eventual generation processes.

Summing up, the thesis is making its contribution to ISCUE’s efforts to develop
a Ul for the PrIML vocabulary. The original expectation, that such a generated Ul
would immediately increase productivity and usability has to be put into perspective.
A quite definite recommendation can be given to use the Eclipse Modeling Framework
in combination with the Extended Editing Framework. However, the willingness to
accept imperfection especially when it comes to EEF and the necessity to customize
Java source code and/or the input schema models is essential. A web-based application
as developed parallel to the Eclipse approach is in this state not feasible. But forming
a demonstration and proof-of-concept case for moving state and software architecture
to the client-side it is highly valuable for the understanding of web application design
and generator methods producing such applications.

66

Bibliography

[Apal2]

[Appl1]

[Bay12]

[Big12]

[Brol0)]

[Calo3]

[Cat12]

[Chr93]

[Cla08]

[Cofl1]

[Cos12]

[Cro02]

[Cza04]

Apache. Apache Ant. http://ant.apache.org/ (Retrieved on June 25,
2012), 2012.

Apple Corp. Mac OS X Human Interface Guidelines. http://
developer.apple.com/library/mac/#documentation/UserExperience/
Conceptual/AppleHIGuidelines/Intro/Intro.html (Retrieved on June
25, 2012), 2011.

Bayer, Michael. Mako : Templates for Python. http://www.
makotemplates.org/ (Retrieved on June 25, 2012), 2012.

Bigot, Peter A. PyXB : Python XML Schema Bindings. http://pyxb.
sourceforge.net/ (Retrieved on June 25, 2012), 2012.

Brown, Alex. Document Schema Definition Languages (DSDL). http://
dsdl.org/ (Retrieved on June 25, 2012), 2010.

Calvary, Gagélle and Coutaz, Joélle and Thevenin, David and Limbourg,
Quentin and Bouillon, Laurent and Vanderdonckt, Jean. A unifying refer-
ence framework for multi-target user interfaces. http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.100.4512&rep=repl&type=pdf
(Retrieved on June 25, 2012), 2003.

Catlin, Hampton. SASS : Syntactically Awesome Stylesheets. http:
//sass-lang.com/ (Retrieved on June 25, 2012), 2012.

Christias, Panagiotis. UNIX man pages: diff(). http://unixhelp.ed.ac.
uk/CGI/man-cgi?diff (Retrieved on June 25, 2012), 1993.

Clark, James. Trang : multi-format schema converter based on RELAX
NG. http://www.thaiopensource.com/relaxng/trang.html (Retrieved
on June 25, 2012), 2008.

CoffeeScript. CoffeeScript. http://jashkenas.github.com/
coffee-script/ (Retrieved on June 25, 2012), 2011.

Costello, Roger L. XML Schemas: Best Practices. http://www.xfront.
com/GlobalVersusLocal.html (Retrieved on June 25, 2012), 2012.

Crockford, Douglas. Introducing JSON. http://www.json.org (Retrieved
on June 25, 2012), 2002.

Czarnecki, Krzysztof and Eisenecker, Ulrich W. Generative Programming :
Methods, Techniques, and Applications. 2004.

67

http://ant.apache.org/
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
http://www.makotemplates.org/
http://www.makotemplates.org/
http://pyxb.sourceforge.net/
http://pyxb.sourceforge.net/
http://dsdl.org/
http://dsdl.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4512&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4512&rep=rep1&type=pdf
http://sass-lang.com/
http://sass-lang.com/
http://unixhelp.ed.ac.uk/CGI/man-cgi?diff
http://unixhelp.ed.ac.uk/CGI/man-cgi?diff
http://www.thaiopensource.com/relaxng/trang.html
http://jashkenas.github.com/coffee-script/
http://jashkenas.github.com/coffee-script/
http://www.xfront.com/GlobalVersusLocal.html
http://www.xfront.com/GlobalVersusLocal.html
http://www.json.org

[Del07]

[Doc12]

[Dox12]

[Ecl06a]

[Ecl06D)

[Ecl12a]

[Ecl12b]

[Ecl12c]

[ECM12]

[Gool2]

[Gos05]

[Gri01]

[Han12]

68

Delacre, Jean-Pierre. A Comparative Analysis of Transformation Engines
for User Interface Development. https://lilab.isys.ucl.ac.be/BCHI/
publications/2007/Delacre-MSc2007.pdf (Retrieved on June 25, 2012),
2007.

DocumentCloud. Backbone.js. http://documentcloud.github.com/
backbone/ (Retrieved on June 25, 2012), 2012.

Doxygen. Doxygen. http://www.stack.nl/~dimitri/doxygen/ (Retrieved
on June 25, 2012), 2012.

Eclipse. Generating an EMF Model using XML Schema (XSD).
http://help.eclipse.org/ganymede/index. jsp?topic=/org.eclipse.
emf .doc/tutorials/x1libmod/x1libmod.html (Retrieved on June 25, 2012),
2006.

Eclipse. Package org.eclipse.emf.ecore (EMF JavaDoc). http:
//download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/
eclipse/emf/ecore/package-summary.html (Retrieved on June 25,
2012), 2006.

Eclipse. Acceleo. http://www.eclipse.org/acceleo/ (Retrieved on June
25, 2012), 2012.

Eclipse. EEF/Tutorials/First Generation. http://wiki.eclipse.org/
EEF/Tutorials/First_Generation (Retrieved on June 25, 2012), 2012.

Eclipse. Xpand / Xtend Reference. http://help.eclipse.org/galileo/
index. jsp?topic=/org.eclipse.xpand.doc/help/ch01.html (Retrieved
on June 25, 2012), 2012.

ECMAScript. ECMAScript : the language of the web. http://www.
ecmascript.org/ (Retrieved on June 25, 2012), 2012.

Google Inc. Android Design. http://developer.android.com/design/
index.html (Retrieved on June 25, 2012), 2012.

Gossman, John. Introduction to Model/View/ViewModel pattern for build-
ing WPF apps. 2005.

Griffiths, Tony and Barclay, Peter J. and Paton, Norman W. and McKirdy,
Jo and Kennedy, Jessie B. and Gray, Philip D. and Cooper, Richard and
Goble, Carole A. and da Silva, Paulo Pinheiro. Teallach: a model-based
user interface development environment for object databases. Interacting
with Computers, 14(1):31-68, 2001.

Hansson, David Heinemeier. Ruby on Rails. http://rubyonrails.org/
(Retrieved on June 25, 2012), 2012.

https://lilab.isys.ucl.ac.be/BCHI/publications/2007/Delacre-MSc2007.pdf
https://lilab.isys.ucl.ac.be/BCHI/publications/2007/Delacre-MSc2007.pdf
http://documentcloud.github.com/backbone/
http://documentcloud.github.com/backbone/
http://www.stack.nl/~dimitri/doxygen/
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/tutorials/xlibmod/xlibmod.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/tutorials/xlibmod/xlibmod.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://www.eclipse.org/acceleo/
http://wiki.eclipse.org/EEF/Tutorials/First_Generation
http://wiki.eclipse.org/EEF/Tutorials/First_Generation
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.xpand.doc/help/ch01.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.xpand.doc/help/ch01.html
http://www.ecmascript.org/
http://www.ecmascript.org/
http://developer.android.com/design/index.html
http://developer.android.com/design/index.html
http://rubyonrails.org/

[Hun00]

[1SC11]

[1SC12]

[Jav10]

[Jav12]

Qui2a]

[Qul2b]

jQuizd]

[Jso12]

[Kay09]

[K1a06]

[KXF12]

[Leh05]

[Lid12]

[Macllal

[Macl1b]

Hunt, Andrew and Thomas, David. The pragmatic programmer : from jour-
neyman to master. Addison-Wesley Longman Publishing Co., Inc. Boston,

MA, USA, 2000.

ISCUE. ISCUE : Embedded Projects. http://www.iscue.com/ (Retrieved
on June 25, 2012), 2011.

ISCUE. Explanations by ISCUE staff concerning PrIML design and devel-
opments, 2012.

Java Swing. Java Swing. http://www. javaswing.org/ (Retrieved on June
25, 2012), 2010.

Java. Project JAXB. http://jaxb.java.net/ (Retrieved on June 25,
2012), 2012.

jQuery. jQuery : write less, do more. http://www.jquery.com/ (Retrieved
on June 25, 2012), 2012.

jQuery. jQuery Templates Plugin. http://api.jquery.com/category/
plugins/templates/ (Retrieved on June 25, 2012), 2012.

jQuery. jQuery UL http://jqueryui.com/ (Retrieved on June 25, 2012),
2012.

Jsonix. Jsonix. http://confluence.highsource.org/display/JSNX/
Jsonix (Retrieved on June 25, 2012), 2012.

Kay, Michael. Saxon B. http://sourceforge.net/projects/saxon/
files/Saxon-B/ (Retrieved on June 25, 2012), 2009.

Klar, Michael and Klar, Susanne. Finfach generieren : Generative Program-
mierung verstandlich und prazisnah. Hanser, Miinchen, 2006.

KXForms. KXForms. http://www.lst.de/~cs/kode/kxforms.html (Re-
trieved on June 25, 2012), 2012.

Lehmann, Christian. Einfiihrung in modellbasierte XML-Sprachen fiir
Benutzerschnittstellen : User Interface Engineering fiir mobile und
web-basierte Anwendungen. http://ebus.informatik.uni-leipzig.de/
www/media/lehre/uiseminar05/ausarbeitung-lehmann.pdf (Retrieved
on June 25, 2012), 2005.

Liddell, Henry George and Scott, Robert. Meta - Greek word study
tool. http://www.perseus.tufts.edu/hopper/morph?l=meta’%2F&la=
greek#lexicon (Retrieved on June 25, 2012), 2012.

MacCaw, Alex. Asynchronous Uls - the future of web user interfaces. http:
//alexmaccaw.co.uk/posts/async_ui (Retrieved on June 25, 2012), 2011.

MacCaw, Alex. JavaScript Web Applications. 2011.

69

http://www.iscue.com/
http://www.javaswing.org/
http://jaxb.java.net/
http://www.jquery.com/
http://api.jquery.com/category/plugins/templates/
http://api.jquery.com/category/plugins/templates/
http://jqueryui.com/
http://confluence.highsource.org/display/JSNX/Jsonix
http://confluence.highsource.org/display/JSNX/Jsonix
http://sourceforge.net/projects/saxon/files/Saxon-B/
http://sourceforge.net/projects/saxon/files/Saxon-B/
http://www.lst.de/~cs/kode/kxforms.html
http://ebus.informatik.uni-leipzig.de/www/media/lehre/uiseminar05/ausarbeitung-lehmann.pdf
http://ebus.informatik.uni-leipzig.de/www/media/lehre/uiseminar05/ausarbeitung-lehmann.pdf
http://www.perseus.tufts.edu/hopper/morph?l=meta%2F&la=greek#lexicon
http://www.perseus.tufts.edu/hopper/morph?l=meta%2F&la=greek#lexicon
http://alexmaccaw.co.uk/posts/async_ui
http://alexmaccaw.co.uk/posts/async_ui

[Mac12]

[Meilla]

[Meillb]

[mool2]

[Mye92]

[Mye95]

[Mye00]

[Nok12]

[0°G12]

[OMG11a]

[OMG11b]

[OMG12]

[Osm12]

[Pin03]

[Pro12]

70

MacCaw, Alex. Spine : build awesome JavaScript MVC applications. http:
//spinejs.com/ (Retrieved on June 25, 2012), 2012.

Meixner, Gerrit. Modellbasierte Entwicklung von Benutzungsschnittstellen.
Informatik-Spektrum, 34(4):400-404, #aug# 2011.

Meixner, Gerrit and Paterno, Fabio and Vanderdonckt, Jean. Past, Present,
and Future of Model-Based User Interface Development. i-com, 10(3):2-11,
2011.

mootools. mootools : a compact javascript framework. http://mootools.
net/ (Retrieved on June 25, 2012), 2012.

Myers, Brad A. and Rosson, Mary Beth. Survey on User Interface Program-
ming. In Bauersfeld, Penny and Bennett, John and Lynch, Gene, editor,
CHI, pages 195-202. ACM, 1992.

Myers, Brad A. User Interface Software Tools. ACM Trans. Comput.-Hum.
Interact., 2(1):64-103, 1995.

Myers, Brad and Hudson, Scott E. and Pausch, Randy. Past, present, and
future of user interface software tools. ACM Trans. Comput.-Hum. Interact.,
7:3-28, March 2000.

Nokia Corp. Qt : cross-platform application and UI framework. http:
//qt .nokia.com/ (Retrieved on June 25, 2012), 2012.

O’Grady, Stephen. The RedMonk Programming Language Rank-
ings: February 2012. http://redmonk.com/sogrady/2012/02/08/
language-rankings-2-2012/ (Retrieved on June 25, 2012), 2012.

OMG. OMG Meta Object Facility (MOF) Core Specification : Version
2.4.1. 2011.

OMG. Unified Modeling Language™ (UML®). http://www.omg.org/
spec/UML/index.htm (Retrieved on June 25, 2012), 2011.

OMG. Object Management Group (OMG). http://www.omg.org/ (Re-
trieved on June 25, 2012), 2012.

Osmani, Addy. Digesting JavaScript MVC — Pattern
Abuse Or Evolution? http://addyosmani.com/blog/
digesting-javascript-mvc-pattern-abuse-or-evolution/ (Retrieved

on June 25, 2012), 2012.

Pinheiro da Silva, Paulo and Paton, Norman W. User Interface Modeling in
UMLi. IEEE Software, 20(4):62-69, 2003.

Prototype. prototype : JavaScript framework. http://www.prototypejs.
org/ (Retrieved on June 25, 2012), 2012.

http://spinejs.com/
http://spinejs.com/
http://mootools.net/
http://mootools.net/
http://qt.nokia.com/
http://qt.nokia.com/
http://redmonk.com/sogrady/2012/02/08/language-rankings-2-2012/
http://redmonk.com/sogrady/2012/02/08/language-rankings-2-2012/
http://www.omg.org/spec/UML/index.htm
http://www.omg.org/spec/UML/index.htm
http://www.omg.org/
http://addyosmani.com/blog/digesting-javascript-mvc-pattern-abuse-or-evolution/
http://addyosmani.com/blog/digesting-javascript-mvc-pattern-abuse-or-evolution/
http://www.prototypejs.org/
http://www.prototypejs.org/

[ReeT8]

[REL11]

[Sch96]

[Sch12]

[Sel12]

[Sen12]

[Shn10]

[Sta07]

[Ste09]

[Sty12]

[Sze96)]

[Tra02]

[Tra09]

[Twill]

[UsiO7a)

Reenskaug, Trygve. MVC. http://heim.ifi.uio.no/~trygver/themes/
mvc/mvc-index.html (Retrieved on June 25, 2012), 1978.

RELAX NG. RELAX NG home page. http://relaxng.org/ (Retrieved
on June 25, 2012), 2011.

Schlungbaum, Egbert. Model-based User Interface Software Tool : current
state of declarative models. 1996.

Schematron. Schematron : a language for making assertions about patterns
found in XML documents. http://www.schematron.com/ (Retrieved on
June 25, 2012), 2012.

Sellier, Alexis. less : The dynamic stylesheet language. http://lesscss.
org/ (Retrieved on June 25, 2012), 2012.

Sencha. Ext JS 4.1 : JavaScript Framework for Rich Apps in Every Browser.
http://www.sencha.com/products/extjs (Retrieved on June 25, 2012),
2012.

Shneiderman, Ben and Plaisant, Catherine. Designing the User Interface
- Strategies for Effective Human-Computer Interaction (5. ed.). Addison-
Wesley, 2010.

Stahl, Thomas and Volter, Markus and Efftinge, Sven and Haase, Arno.
Modellgetriebene Softwareentwicklung : Techniken, Engineering, Manage-
ment. dpunkt.verlag, Heidelberg, #may# 2007.

Steinberg, Dave and Budinsky, Frank and Paternostro, Marcelo and Merks,
Ed. EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2.
edition, 2009.

Stylus. Stylus : Expressive, dynamic, robust CSS. http://learnboost.
github.com/stylus/ (Retrieved on June 25, 2012), 2012.

Szekely, Pedro A. Retrospective and Challenges for Model-Based Interface
Development. In Bodart, Francois and Vanderdonckt, Jean, editor, DSV-IS,
pages 1-27. Springer, 1996.

Traetteberg, Hallvard. Model-based user interface design. http://www.
idi.ntnu.no/~hal/_media/research/thesis.pdf (Retrieved on June 25,
2012), 2002.

Traetteberg, Hallvard. Integrating Dialog Modeling and Domain Modeling
: the Case of Diamodl and the Eclipse Modeling Framework, 2009.

Twitter Inc. Bootstrap, from Twitter. http://twitter.github.com/
bootstrap/ (Retrieved on June 25, 2012), 2011.

UsiXML. User Interface eXtensible Markup Language. http://www.
usixml.org/ (Retrieved on June 25, 2012), 2007.

71

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://relaxng.org/
http://www.schematron.com/
http://lesscss.org/
http://lesscss.org/
http://www.sencha.com/products/extjs
http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/
http://www.idi.ntnu.no/~hal/_media/research/thesis.pdf
http://www.idi.ntnu.no/~hal/_media/research/thesis.pdf
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://www.usixml.org/
http://www.usixml.org/

[Usi07b]

[W3C95]

[W3C04a

[W3C04b)

[W3C04c]

[W3C04d]

[W3CO05]

[W3C07]

[W3C08]

[W3C11a]

[W3C11b]

[W3C12a]

[W3C12b)

[W3C12(]

72

UsiXML. UsiXML : Reference Manual. http://www.usixml.org/index.
php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.
pdf (Retrieved on June 25, 2012), 2007.

W3C. Overview of SGML Resources . http://www.w3.org/MarkUp/SGML/
(Retrieved on June 25, 2012), 1995.

W3C. RDF Primer : W3C Recommendation 10 February 2004. http:
//www.w3.org/TR/2004/REC-rdf-primer-20040210/ (Retrieved on June
25, 2012), 2004.

W3C. XML Schema Part 0: Primer Second Edition ; W3C Recommenda-
tion 28 October 2004. http://www.w3.org/TR/xmlschema-0/ (Retrieved
on June 25, 2012), 2004.

W3C. XML Schema Part 1: Structures Second Edition ; W3C Recommen-
dation 28 October 2004. http://www.w3.org/TR/xmlschema-1/ (Retrieved
on June 25, 2012), 2004.

W3C. XML Schema Part 2: Datatypes Second Edition ; W3C Recommen-
dation 28 October 2004. http://www.w3.org/TR/xmlschema-2/ (Retrieved
on June 25, 2012), 2004.

W3C. Document Object Model (DOM). http://www.w3.org/DOM/ (Re-
trieved on June 25, 2012), 2005.

W3C. XSL Transformations (XSLT) Version 2.0 : W3C Recommendation
23 January 2007. http://www.w3.org/TR/2007/REC-xs1t20-20070123/
(Retrieved on June 25, 2012), 2007.

W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition) : W3C Rec-
ommendation 26 November 2008. http://www.w3.org/TR/xml/ (Retrieved
on June 25, 2012), 2008.

W3C. W3C - Model-Based User Interfaces Working Group Home Page.
http://www.w3.0rg/2011/mbui/ (Retrieved on June 25, 2012), 2011.

W3C. XMLHttpRequest Level 2 : W3C Working Draft 16 August
2011. http://www.w3.org/TR/2011/WD-XMLHttpRequest2-20110816/
(Retrieved on June 25, 2012), 2011.

W3C. Cameleon Reference Framework Diagram. http://wuw.
w3.0rg/2005/Incubator/model-based-ui/wiki/images/d/d9/
Camelon-reference-framework.png (Retrieved on June 25, 2012),
2012.

W3C. HTMLS5 : a vocabulary and associated APIs for HTML and XHTML.
http://www.w3.org/TR/html5/ (Retrieved on June 25, 2012), 2012.

W3C. W3C - HTML. http://www.w3.org/standards/techs/html#w3c_
all (Retrieved on June 25, 2012), 2012.

http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf
http://www.w3.org/MarkUp/SGML/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/DOM/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xml/
http://www.w3.org/2011/mbui/
http://www.w3.org/TR/2011/WD-XMLHttpRequest2-20110816/
http://www.w3.org/2005/Incubator/model-based-ui/wiki/images/d/d9/Camelon-reference-framework.png
http://www.w3.org/2005/Incubator/model-based-ui/wiki/images/d/d9/Camelon-reference-framework.png
http://www.w3.org/2005/Incubator/model-based-ui/wiki/images/d/d9/Camelon-reference-framework.png
http://www.w3.org/TR/html5/
http://www.w3.org/standards/techs/html#w3c_all
http://www.w3.org/standards/techs/html#w3c_all

[Wik12a] Wikipedia. Wikipedia - Desktop metaphor. http://en.wikipedia.org/
wiki/Desktop_metaphor (Retrieved on June 25, 2012), 2012.

[Wik12b] Wikipedia. Wikipedia - XML schema language comparison. http://en.
wikipedia.org/wiki/XML_schema_language_comparison (Retrieved on
June 25, 2012), 2012.

[Zenl2] Zend. Zend Framework. http://framework.zend.com/ (Retrieved on June
25, 2012), 2012.

73

http://en.wikipedia.org/wiki/Desktop_metaphor
http://en.wikipedia.org/wiki/Desktop_metaphor
http://en.wikipedia.org/wiki/XML_schema_language_comparison
http://en.wikipedia.org/wiki/XML_schema_language_comparison
http://framework.zend.com/

A Detailed Generation Step Descriptions

This appendix contains complementary descriptions of the generation steps that charac-
terize the two prototypes. In the case of the web application the methods are visualized
and explained in more detail than in chapter 6. The screen cast demonstrating the web
solution focuses on its usage since the generation of the web application is accomplished
without much user interaction. Enabling the reader to comprehend the functionality
and purpose of each method in the Python module is the goal of the web application
detailed generation step description.

For the EMF/EEF editor the necessary wizard and configuration steps are explained.
These are based on two tutorial guides that the EMF and EEF developer teams provide.
The purpose is to especially enable ISCUE’s staff to be able to reproduce the generations
made in Eclipse.

A.1 Web Application

The processes for generating the web application components are written in the Python
scripting language. The author developed a Python module containing all relevant
methods for transforming PyXB Python classes into models, templates (i.e., views),
controllers, JavaScript-XML bindings and the static HTML application file. This mod-
ule is usable in two ways that are common practice in Python development: it is a)
executable from the command line with arguments parsed with the argparse module
and it is b) possible to import it (or only specific parts) from another Python script in
order to use the contained methods programmatically.

As the module relies on PyXB class output in order to provide models, views and
controllers, the PyXB generator script included in the PyXB package is to be executed
first. The author of this thesis developed another Python script wrapping the PyXB
generation step and the methods of the aforementioned Python generator module. It
takes as a mandatory command line argument the name(s) of the XSD input file(s).
Optionally the path to the PyXB generator script can be provided in case it is not
included in the PATH environment variable.

The most important transformation and templating methods of the process are vi-
sualized as flow charts (in some cases slightly simplified and abstracted) in figures A.1
through A.7. They are described in the following chapters.

A.1.1 Environment Setup

The development environment used has several aspects. The generation scripts were
written in Python, executed with Python v2.7.2. The PyXB library was installed in
v1.1.3 and its installation requires the Python package setuptools. Templating is
done with the package mako, v0.7.0 is used. The Python installer itself, setuptools

74

(both for Win32 platforms), PyXB and mako are available on the thesis CD-ROM.
Unixoid operating systems usually do provide Python by default. The exact Python
version should not critically matter, but e.g. the package argparse is only available
from Python 2.7 onwards.

The application has been run on Mozilla Firefox v12 and v13 and Google Chrome
v19. The Firefox v13 installer is available on the CD-ROM, Google Chrome does not
provide a stand-alone installer file.

Compilation of CoffeeScript is usually done offline via the node.js compiler, eventually
complemented by other processes such as minification of the resulting JavaScript file(s)
and bundling up all files in one. These steps are omitted for this prototype and the
inline CoffeeScript compiler is used. It is remarkably influencing performance, even in
small use cases as the one described here but since it is a proof of concept rather than
a performance demonstration this is a trade-off being made in favor of development
simplicity.

A.1.2 Preparation Methods

PyXB provides a class hierarchy for the simple and complex types the input XSD de-
fines. These classes and its properties have to be inspected by the script and function
as the parametrization of the templating mechanisms that output the model, view and
controller instances for JavaScript and CoffeeScript respectively. The first step is re-
trieving Python dicts (dict is Python’s abbreviated form for dictionary) from these
PyXB classes. Simple types, complex types and XML Schema’s own simple type defi-
nitions are processed separately.

Method simpleType2Python(...) Figure A.1 depicts the process of transforming
simple type definitions to Python dicts. The first condition is whether the type is
named (i.e., the XSD provides a name attribute for it) or anonymous (i.e., it is an
unnamed child of an xsd:element or xsd:attribute node). Names from the XSD are
reflected with namespace and local part, anonymous simple types have a formalized
class name in the form STD_ANON_[number]| where [number]| is one of the continuously
assigned numbers for anonymous simple types. Thus all anonymous types are unique
throughout the complete namespace group that aggregates all namespaces involved.

Included in the resulting dict are enumeration lists, constraints concerning minimum
and maximum values, assertions about (minimum, maximum or exact) length, regular
expression patterns. These pieces of information allow for appropriate transformations
when models, templates and controllers are generated.

Method complexType2Python(...) Similar to the method described above for trans-
forming simple types into Python dicts exists a method accomplishing this task for
complex type definitions. It also distinguishes between named and anonymous types,
taking into account the more precise information available.

In terms of the content model there are three kinds of constructs inspected and re-
flected accordingly: a) XSD groups (sequence, choice, all), b) elements and c) attributes.
All these are directly adapted and thus the complete structure is available in the re-
sulting dict. For groups and elements the relevant properties are name, type (group

75

g
LEL"J

4
3

Figure A.1: Flow chart: method simpleType2Python(. . .)
76

Figure A.2: Flow chart:

method complexType2Python(. . .)

77

type for groups, data types for elements), cardinalities (minOccurs and maxOccurs).
Elements can also have default values, so can attributes. For the latter there are no
cardinalities, but attribute use assertions (required, optional or prohibited). A fixed
attributes indicates that the value of this attribute is set by default and cannot be
changed. These information are transported into the Python dict.

In addition to the directly copied information on cardinalities, the method computes
“acummulated” minOccurs and maxOccurs values by mulitplying the values of all con-
structs from the respective component up to the content model root. These computed
values are used by the method getFlatElementsMapForComplexType(...).

Method getFlatElementsMapForComplexType(...) For generating models, views
and controllers out of the XSD structures, the often very verbose and complex structure
of complex type definition is flattened to a simplified Python dict. It contains the (in any
case flat) list of attribute uses and a list of potential sub-elements retrieved by skipping
groups when encountered in iteration, only taking elements into account. This takes as
input the rsult of the nested Python dict created by method complexType2Python(. . .)
(which is scripted explicitly mainly for debugging and logging reasons in addition to a
better over-all maintainablity enabled by such a two-fold process). The acummulated
cardinalities mentioned above are the only cardinality values existing in the resulting
dict. Iterating over the elements is directly possible and XSD groups are abstracted
out. This leads to information loss in some cases, when it comes to preserving the order
of sub-elements in the parent element. This simplification is a trade-off made in favor
of comprehensibility of the resulting UI components.

A.1.3 Templating Methods for MVC Components

The instances of MVC’s three component types models, views and controllers are gen-
erated with the Python templating library mako. It uses the same syntax for expression
contexts (${...}) as jQuery templates, that makes escaping necessary when generating
templates. Expression contexts for later jQuery evaluation have to be transported into
the result that mako puts out. Formally, a templating language (mako) is used to pro-
duce text string output at generation time that itself contains templating syntax for
another templating engine (jQuery tmpl) that will be evaluated at run time.

Basically two different sorts of generation output is required for the generated compo-
nents: JavaScript (for an object literal holding the template strings, for the Backbone .
RelationalModel classes and the Jsonix mappings) and CoffeeScript for the Spine.
Controllers. An important aspect to be taken into account when designing the mako
templates is the fact that the CoffeeScript syntax is whitespace-sensitive and indenta-
tion carries information about expression blocks. This does not apply to JavaScript
but a clear and appropriate source code indentation is important for debugging and
comprehensibility issues there as well.

Method getModelForComplexType(...) Models for the generated web application
are implemented as sub-classes of the Backbone.RelationalModel class. It origins
from the Backbone-Relational extension of the web development MVC framework Back-
boneJS. It extends Backbone.Models by providing support for one-to-one, one-to-many

78

Figure A.3: Flow chart: method getFlatElementsMapForComplexType(...)

79

80

-
- =

Figure A.4: Flow chart: method getModelForComplexType(...)

and many-to-many relations between model instances. Including the expanded related
instances into the JSON serialization automatically belongs to the features this class
brings. The relations entry in such a Backbone.RelationalModel holds information
about all out-going relations. In the method that is described, all complex-typed sub-
elements are represented as entries in this relations component of the model definition.
The key is the name for addressing the related instances, relatedModel references the
model of which the related instance are. Property includeInJSON is used to assert
whether to include complete instances as properties in the serialization, only specific
fields or nothing at all. Defining the relation type, type can take one of the values
Backbone.HasOne and Backbone.HasMany. In this context, Backbone.HasMany is al-
ways used due to easier maintainablity when setting/adding concrete relation values.
Potential reverse relations that can be asserted that lead to automatic addition of the
respective reverse direction are not used in this application context since there is no
corresponding feature in the XSD and no such direct need arose in the development
phase.

All simple-typed sub-elements and all attributes get an entry in the defaults class
component. When default values de facto exist, they are set on the respective elemen-
t/attribute, otherwise an empty array is asserted for repeatable elements/attributes, or
null if none of these cases apply.

The model class source code is generated as JavaScript code. BackboneJS does sup-
port CoffeeScript but the Backbone-Relational extension does not completely conform
to the paradigms CoffeeScript introduces (e.g., native class support emulation). This
is the reason for choosing JavaScript directly as the target language for model class
definitions.

Method getTemplateForComplexType(...) Templates take the role of MVC views,
in this case jQuery templates. For each attribute of the input type dict a jQuery
template call invoking the template for the data type of the respective attribute is
generated. This jQuery template call is wrapped in a jQuery template conditional
statement checking for the existence of a value for this data field. Nota bene: this
jQuery template conditional and template call will be executed at runtime, only the
mako templates are directly evaluated in the Python script.

For each simple-typed sub-element of the type jQuery template calls are generated
analogously to the ones generated for attributes in all cases where an element has a
value for minOccurs > 1 (i.e., it is required). Such jQuery template calls are included
for minOccurs times. This ensures the existence of form elements for at least the
required number of such sub-elements. Such expansion is an element of user guidance
that can help ensure the entry of valid data for elements. Buttons for adding instances
of complex-typed sub-elements complement the template calls.

Method getControllerForComplexType(...) Controllers, as the third kind of com-
ponent in the MVC paradigm, are generated as CoffeeScript classes extending Spine.
Controller. Spine, similar to BackbonelJS (note the similarity in terms of nomencla-
ture metaphors of both frameworks), provides constructs for defining MVC components.
Spine is in most cases more light-weight, BackboneJS does not directly implement a

81

82

getTemplateForComplexType(...)

/

start
For each For each
For each attribute complex-typed simple-typed
element element

\

Create button for
adding further such
sub-elements

Create jQuery

template call aiming for

type of attribute

Y

—<_ minOccurs > 0?

yes

no

For minOccurs times

Create jQuery
— template call aiming for
type of element

l

getTemplateForComplexType(...)

start

Figure A.5: Flow chart: method getTemplateForComplexType(...)

Figure A.6: Flow chart: method getControllerForComplexType(...)

83

Controller class but includes controller-like functionality in its views, that it explicitly
holds in JavaScript (or CoffeeScript) objects, contrary to Spine.

The basic parts of Spine.Controllers that are generated by this method are a)
the events map declaring events to listen to, add_* and create_* methods for adding
(complex) sub-elements and their respective controllers, the constructor function, meth-
ods for rendering and removing and the save_changes method for setting the attribute
values.

Method getAppController(...) In addition to the type-specific controllers that are
responsible for their attached items there needs to exist an application controller being
the entry point into the application. It instantiates the top-level element controller(s).

For every possible top-level element the generator designates code fragments, all of
which are commented by default. The application is only functional when one of these
fragments is un-commented.

The application controller gets a doOutputSource method that is triggered whenever
the static “get data” button is clicked. Its purpose is to gather the data from the editor’s
model instance (in fact, the application controller’s item), convert it to JSON, invoke
the Jsonix marshaller with this JSON data, beautify the resulting XML data with the
vkbeautify script and output the pretty-printed XML data to the right-hand textarea
on the applications interface.

Necessary for marshalling specific JSON data structures are mappings conforming to
the Jsonix library. These are generated along with models, views and controllers.

A.1.4 Additional Generation Methods

Method getJsonixMappingForComplexType(...) Jsonix provides a script evaluat-
ing JavaScript objects as the basis for JSON-to-XML mappings. This method generates
such a mapping object for each complex XSD type. Figure A.7 depicts the process.
First of all, a declaration for each type has to be generated in order to make types
referencable. This declaration only sets an object and attaches a name property to it.

After the declarations generation all complex types are iterated again and for each
type all sub-elements and attributes are asserted with their respective names and
data types. Since Jsonix does not fully support XML Schema’s simple data types,
only Boolean is specifically resolved as such, all other simple types are resolved to
xsd:strings. This does not limit the serialization functionality since validation is not
part of Jsonix’ functionality anyway.

The last piece of information needed by Jsonix’ marshalling and unmarshalling pro-
cesses is a list of possible top-level elements. These are iterated and a name-type relation
is appended for each.

Method getHTMLStaticFile(...) The static part of the application is generated by
this method. It concatenates strings for the HI'ML header, the controllers and the
HTML body. The script includes in the header are

* jQuery,
e jQuery templates plugin,

84

Figure A.7: Flow chart: method getJsonixMappingForComplexTypeC(. . .)

85

the inline CoffeeScript compiler script,

Spine,

UnderscoreJS (required by BackbonelJS),
BackbonelJS,

Backbone-Relational,

the Jsonix library,

the application’s Jsonix mapping file,
vkbeautify as the used XML beautifying script,
the application’s models and

the application’s templates.

The content of the HTML file is only depending on the controllers for the application,
which are directly inserted into a CoffeeScript <script> element. All other content is
statically put out into the file.

A.2 Eclipse-Based

A.2.1 Environment Setup

The Eclipse IDE was used in version 3.7 Indigo with modelling components on both
Ubuntu Linux (32 bit) and Windows 7 (32 bit). The archive files for these releases can
be found on the thesis” CD-ROM in the eclipse folder.

EMF and EEF were bundled with these releases, EMF in version 2.7.0 and EEF in
version 1.0.2.

A.2.2 Eclipse Modeling Framework (EMF)

Prior to any of the EMF-specific generation steps it is useful?® to disable the creation
of Ecore FeatureMaps. These are incorrectly handled by EEF in the later generation
steps, so their creation is suppressed in the first place. EMF creates FeatureMaps
for repeatable (i.e., with maxOccurs > 1) XSD content groups and mixed complex
types. These have to be complemented in the original XML Schema with the attribute
ecore:FeatureMap="" in order to prevent EMF from building FeatureMaps for them.

The tutorial [Ecl06a] was used for these steps. It explains the prerequisites that are
necessary when generating an EMF plugin for Eclipse. The plugin packages

org.eclipse.emf.common,
org.eclipse.emf.ecore,
org.eclipse.enf .mapping and
org.eclipse.emf.codegen

have to be installed. This can be checked through the plugin overview Eclipse provides
under Help / About Eclipse / Installation Details / Plugins.

Using the XSD-to-EMF wizard starts with creating a new project. The type of the
project has to be EMF Project, listed below the Eclipse Modeling Framework group in

231t proved to be even necessary to do so in case of the combination of EMF and EEF in the PrIML
use case.

86

the wizard for project creation. Entering a unique project name and proceeding leads
to the choice of which model type to use for the EMF plugin. Ecore, Rose, UML and
XML Schema are possible, for this use case XML Schema is chosen. The next step
requires the path to the XML Schema file that should be used. It can either be resolved
from the workspace if it already exists in it or from any other path in the file system.
In case the desired XML Schema definition is separated into more than one XSD file, it
is useful to choose the master XSD file that (directly or indirectly) imports the other
XSDs. (The PrIML vocabulary for example is separated into seven (eight when taking
PrIOF into account as well) files which are all (most of them directly, some indirectly)
referenced (via xsd:import statements) from the PrIML_Schema.xsd file.)

While loading the respective XSD file(s) the wizard is blocked from user interaction.
When it finishes loading the input field Generator model file name has been filled in.
The default value is the XSD local file name with an extension set to .genmodel. The
option Create XML Schema to Ecore Map has to be checked in order to generate the
mapping needed for serialization and de-serialization.

The following overview lists the Java packages that have been built for the namespaces
resolved from the input XSD(s). All packages that shall be included in the plugin have
to be checked. The same applies to the list below showing referenced namespaces.
Clicking the Finish button creates a project with the name entered at the beginning of
the wizard. It contains a Java Runtime Environment (JRE), a model folder containing
a .ecore, .genmodel and .xsd2ecore model file for each of the packages created from
the input XSD(s) and a source folder (src) holding the generated Java source code files
for the elements, simple types and complex types.

Opening the .ecore model can be done with an XML editor or with the Sample
Ecore Model Editor for a tree view reflecting the Ecore model derived from the XML
Schema model input. Renaming of types and attributes can be applied there, data
types or constraints of attributes can be customized. All facets that Ecore provides are
reflected in the property view describing the model components.

The .genmodel holds meta data about the generation steps that follow this model-
to-model (i.e., XSD to Ecore) and the basic model-to-code transformation (Ecore to
Java classes). A possible configuration that can be taken in the .genmodel is setting
the Create Child option to false for features that shall not be shown in the EMF (and
especially later to-come EEF) tree view. Right-clicking the .genmodel’s tree view root
element provides five Generate ... options. Clicking Generate All invokes all possible
EMF generation steps in the logical order they require. This creates three more projects
in the workspace, next to the basic EMF project just generated: [project name].edit,
[project name].editor and [project name].tests (where [project name] is a wild-
card for the originally chosen EMF generation project name).

Forming the edition basis for the generated classes, the .edit project contains Item-
Providers for all types in the model. ItemProviders enable other classes and processes
to view and edit instances of the classes the input model introduces. They provide con-
tent and labels and handle notifications in case of changes/updates (for ItemProviders
cf. [Ste09], pp. 461t.).

The .editor project is the working plugin executable in the Eclipse workbench. It
can be executed by right-clicking it and choosing Run As / Eclipse Application. This
causes a second Eclipse instance (the workbench) to open in which the editor plugin is

87

running.

A.2.3 Extended Editing Framework (EEF)

In the Eclipse Modeling Framework Technology (EMFT) project exist several other
sub-projects complementing EMF Core. One highly relevant to the approach taken in
this thesis is EEF with its generation steps on top of EMF plugins.

The tutorial [Ecl12b] was used for the following generations. It demands to apply
the steps of the installation guide. The respective update sites for stable and nightly
builds of EEF are linked there; EEF needs to be installed if not already available
through Eclipse’s modelling component set (see chapter A.2.1). When EEF is properly
installed, the tutorial steps can be applied to an EMF plugin set as the result of chapter
A.2.2.

First a destination folder for EEF’s models needs to be set up. The tutorial recom-
mends to call it models, attempting to keep consistency to the EMF model folder, it can
be called model (singular form). It is placed in the .edit plugin project. Right-clicking
on the EMF . genmodel file opens the context menu with the menu item EEF / Initialize
EEF models. Applying this step leads to a wizard asking for the just created destination
folder for the EEF models. Confirmation causes the creation of a .components and a
.eefgen model.

The next step is creating a new source folder in the .edit project. Note that a
usual folder (Right-click / New / Folder) does not suffice, choose Right-click / New /
Source Folder instead and the name has to be src-gen, which is a common practice in
software component generation. Before generating the source code, the EEF runtime
package (org.eclipse.emf.eef.runtime) has to be added to .edit’s plugin.xml file.
Open it with the Plugin Manifest Editor and choose the Runtime tab. After adding
the package open its properties and check the Reexport this dependency in order to
make the EEF runtime package available to further plugins, namely .editor. After
these configurations right-click the generated .eefgen model and choose the EEF /
Generate EEF architecture option.

Due to a reported bug in the used EEF version?® there are incorrect references to a
non-existing Java class EStringToStringMapEntry in every .edit/src-gen/*/components
/DocumentRootPropertiesEditionComponent.java file. Changing the references to the
implementation class EStringToStringMapEntryImpl is the recommended solution and
it indeed solves the errors caused by the otherwise false references. The adjusted meth-
ods can be marked with @generated NOT tags in order to preserve the change when
regenerations are applied.

When the generation is finished, the plugin.xml file in the .edit project has to be
opened with the Eclipse manifest editor. On the runtime tab, the generated *.providers
classes have to be added. After that, re-opening the same plugin.xml file with the XML
or text editor is needed in order to paste the content of the generated *_properties.plugin.
xml file(s) into the plugin.xml.

The last manual step in EEF’s enhancement is overwriting some existing class meth-
ods and one property in the *Editor.java class in the .editor project. See the original

24cf. http://www.eclipse.org/forums/index.php/mv/msg/206326 /660537 /

88

http://www.eclipse.org/forums/index.php/mv/msg/206326/660537/

tutorial on the thesis CD-ROM for the exact methods and property to replace.

After these generation, dependency configuration and manual copy-paste steps the
.editor plugin is enhanced with form-based property views and data entry dialog
windows. All further customizations are optional, some of the ones attempted in the
context of this thesis are described in chapter 6.3.2.

89

B Thesis CD-ROM Contents

The CD-ROM accompanying this thesis contains resources and material used and/or
produced in the context of the thesis. See the following list for detailed information:

e The thesis PDF
e Source code
— PrIML XML Schema collection
— PrIML subset isolated for better development maintainability
— Web Application Generator
* Self-developed, commented Python module pyxb_to_mvc_web_app and
helper script generate.py together with library files
x Generated application for PriML subset
— EMF/EEF
*x Workspace copy containing EMF editor
x Workspace copy containing EEF editor
* Workspace copy containing customized EEF editor
* Saved tutorial used for EEF generation and setup
Eclipse Modeling Components package installer (Windows 32-bit)
Python development environment used
— Python v2.7.2
— Python package pyxb v1.1.3
— Python package setuptools v0.6cl1
— Python package mako v0.7.0
Mozilla Firefox v13 installer (Windows 32-bit)
PriML XSDs and visualizations as .png files
Screen casts of generation processes, some customizations and basic editor usage

90

	Introduction
	Goals
	Thesis Structure

	Project Information Markup Language (PrIML)
	Goals
	Model
	Design Decisions
	Workflow
	XML Authoring
	Transformation Processes

	Relation to Thesis Scope

	User Interface Development
	Overview
	Model-Based User Interface Development
	Goals
	Definitions
	Standards and Paradigms
	Limitations

	Relation to Thesis Scope

	Model-Based Software Development
	Goals
	Efficiency
	Consistency
	DRY (Don't Repeat Yourself)

	Methods
	Relation to Thesis Scope

	Modelling
	Languages and Standards
	Unified Modeling Language
	XML-Related Standards

	Meta-Modelling
	Meta Object Facility
	Eclipse Modeling Framework and Ecore
	Similarities

	Relation to Thesis Scope

	Practical Solution Approaches
	Requirements for User Interface Solution
	Browser-Based Application
	Generating Models
	Generating Views
	Generating Controllers
	Generating JavaScript-XML bindings

	Plugin Using Eclipse Modeling Framework
	Overview
	Generation Processes and Development Steps
	Customization Steps

	Comparison
	Requirement-Based Evaluations
	Overall Comparison
	Recommendations for ISCUE

	Conclusions and Lessons Learned
	Bibliography
	Detailed Generation Step Descriptions
	Web Application
	Environment Setup
	Preparation Methods
	Templating Methods for MVC Components
	Additional Generation Methods

	Eclipse-Based
	Environment Setup
	Eclipse Modeling Framework (EMF)
	Extended Editing Framework (EEF)

	Thesis CD-ROM Contents

